亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Object Detection Algorithm Based on Multi-Scaled Convolutional Neural Networks

卷积神经网络 计算机科学 人工智能 分类 对象(语法) 鉴定(生物学) 目标检测 失真(音乐) 视觉对象识别的认知神经科学 模式识别(心理学) 计算机视觉 算法 深度学习 机器学习 生物 放大器 植物 带宽(计算) 计算机网络
作者
T J Nandhini,K. Thinakaran
标识
DOI:10.1109/aisp57993.2023.10134980
摘要

Object detection algorithms must first identify all the objects inside an image before machine vision can properly categorize and localize them. Many methods have been proposed to handle this problem, with most of the motivation coming from computer vision and deep learning methods. However, prevailing technologies have never effectively recognized tiny, dense things and often failed to detect objects that have undergone random geometric alterations. We analyze the current state of the art in object identification and propose a deformable convolutional network with adjustable depths to address these concerns. The results of our research suggest that they are better than the current best practices, blend deep convolutional networks with flexible convolutional structures to account for geometric variations, and get multi-scaled features. Next, we perform the remaining phases of object identification and region regress by up-sampling the fusion of multi-scaled elements. Experimental validation of our proposed framework demonstrates a considerable improvement in accuracy relative to time spent recognizing small target objects with geometric distortion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻哈哈完成签到,获得积分10
9秒前
36秒前
39秒前
59秒前
apple发布了新的文献求助10
1分钟前
1分钟前
Conner完成签到 ,获得积分10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
xxx发布了新的文献求助10
1分钟前
嵐酱布响堪论文完成签到,获得积分10
1分钟前
Jessica完成签到,获得积分10
1分钟前
2分钟前
3分钟前
aa111发布了新的文献求助10
3分钟前
完美世界应助aa111采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
maher应助科研通管家采纳,获得30
3分钟前
ZYP应助科研通管家采纳,获得10
3分钟前
3分钟前
科研启动发布了新的文献求助30
3分钟前
3分钟前
酷波er应助yahaahaaoo采纳,获得10
3分钟前
科研启动完成签到,获得积分10
4分钟前
科研通AI6应助xxx采纳,获得10
4分钟前
自信号厂完成签到 ,获得积分0
4分钟前
领导范儿应助nikuisi采纳,获得10
4分钟前
4分钟前
wew发布了新的文献求助10
4分钟前
4分钟前
朴素的山蝶完成签到 ,获得积分10
4分钟前
wangfaqing942完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568049
关于积分的说明 14312357
捐赠科研通 4493975
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426221