计算机科学
降维
水准点(测量)
可再生能源
概率逻辑
人工神经网络
还原(数学)
均方误差
维数之咒
太阳能
风力发电
人工智能
数据挖掘
机器学习
可靠性工程
算法
功率(物理)
工程类
数学
统计
物理
电气工程
量子力学
大地测量学
地理
几何学
作者
Devinder Kaur,Shama Naz Islam,M. A. Mahmud,M. E. Haque,Adnan Anwar
出处
期刊:Energy and AI
[Elsevier]
日期:2023-06-13
卷期号:14: 100279-100279
被引量:8
标识
DOI:10.1016/j.egyai.2023.100279
摘要
The advancements in distributed generation (DG) technologies such as solar panels have led to a widespread integration of renewable power generation in modern power systems. However, the intermittent nature of renewable energy poses new challenges to the network operational planning with underlying uncertainties. This paper proposes a novel probabilistic scheme for renewable solar power generation forecasting by addressing data and model parameter uncertainties using Bayesian bidirectional long short-term memory (BiLSTM) neural networks, while handling the high dimensionality in weight parameters using variational auto-encoders (VAE). The forecasting performance of the proposed method is evaluated using various deterministic and probabilistic evaluation metrics such as root-mean square error (RMSE), Pinball loss, etc. Furthermore, reconstruction error and computational time are also monitored to evaluate the dimensionality reduction using the VAE component. When compared with benchmark methods, the proposed method leads to significant improvements in weight reduction, i.e., from 76,4224 to 2,022 number of weight parameters, quantifying to 97.35% improvement in weight parameters reduction and 37.93% improvement in computational time for 6 months of solar power generation data.
科研通智能强力驱动
Strongly Powered by AbleSci AI