路易斯酸
光催化
二茂铁
化学
金属有机骨架
吸附
光化学
X射线光电子能谱
电子转移
催化作用
电子顺磁共振
氧化还原
材料科学
无机化学
化学工程
电化学
有机化学
工程类
物理化学
核磁共振
物理
电极
作者
Xia Li,Wenxi Zhou,Yifan Xu,Zhengqiang Xia,Xinzhi Wang,Qi Yang,Gang Xie,Sanping Chen,Shengli Gao
标识
DOI:10.1016/j.cej.2022.138747
摘要
The introduction of rich-electron ligands is a promising strategy to improve the ligand-to-metal charge transfer (LMCT) ability of metal–organic frameworks (MOFs) for efficient photocatalytic CO2 reduction reactions (CO2RR), while the resulting impaired Lewis acid sites go against stable bonding with CO2 and hinder the electron transfering to CO2. It is thus the key to search a trade-off between increasing LMCT and frustrating Lewis acid. Herein, the ferrocene (Fc) modified UiO-66 series MOFs, NH2-UiO-66-Fc, have been prepared to optimize LMCT for boosting CO2RR through a simple solvent-assisted ligand incorporation (SALI) method. Theoretical calculation and systematic experiments, including photoelectrochemical measures, in situ electron paramagnetic resonance, fluorescence probe analysis and X-ray photoelectron spectroscopy indicate that with increasing Fc content, the LMCT energy of MOFs significantly decreases from 2.66 to 2.10 eV based on the established electron transfer double-channel mechanism, while the Lewis acidity of Zr sites reduces with the CO2 adsorption energy (Ead) ranging from −1.061 to −0.632 eV. Through introducing an optimal Fc content, NH2-UiO-66-Fc(2.0) integrating satisfactory LMCT ability and Lewis acidity shows superior photocatalytic CO2RR performance (CO yield: 90.65 μmol·g−1·h−1), about 13 times higher than that of the unmodified MOF and superior to most reported pristine MOF photocatalysts. DFT calculation demonstrates that the excellent performance of NH2-UiO-66-Fc(2.0) is attributed to the lowest energy barrier of 1.50 eV for the rate-limiting step of *COOH formation. In this work, such a simple post-modification strategy for facilitating the whole electron transfer path of photocatalytic CO2RR will provide a new way to construct high-performance MOFs-based CO2RR photocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI