Evaluating the performance of global precipitation products for precipitation and extreme precipitation in arid and semiarid China

降水 干旱 中国 气候学 环境科学 地理 自然地理学 气象学 地质学 生态学 生物 考古
作者
Yang Liu,Zhengguo Shi,Rui Liu,Mengdao Xing
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:130: 103888-103888 被引量:2
标识
DOI:10.1016/j.jag.2024.103888
摘要

Arid and semiarid areas account for more than half of China, have fragile ecological environments, are sensitive to global climate change and human activities. Due to the advantages of wide coverage and high resolution, multi-sources remote sensing precipitation products play an important role in monitoring precipitation in areas where rainfall gauges are scarce. Therefore, evaluating the performance of different precipitation products becomes very important. Here, the annual and daily average precipitation data from different precipitation products in China were analyzed from 2000 to 2020. Nine precipitation datasets are included: two reanalysis datasets and seven remote sensing datasets. The results show that CHIRPS (Climate Hazards group Infrared Precipitation with Stations) is the best product for precipitation in arid and semiarid China, and the mean annual precipitation correlation coefficient between CHIRPS and observed data is 0.82. CPC (CPC Global Unified Gauge-Based Analysis of Daily Precipitation) shows less dispersion and deviation in the daily precipitation, and the correlation coefficient between CPC and CN05 (observation data) daily precipitation is 0.92. In addition, the performance of precipitation products is tailored to local conditions, with MSWEP (Multi-source weighted-Ensemble Precipitation) evaluating precipitation poorly in Northwestern China but better in the areas with more precipitation. Extreme precipitation in China has shown an increasing trend in the last 20 years, with a very significant increasing trend in extreme precipitation in semi-arid areas and a constant trend in extreme precipitation in arid areas. The PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) is the best product for extreme precipitation in arid and semiarid China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助大饼饼饼采纳,获得30
刚刚
吴旭东发布了新的文献求助10
1秒前
花卷完成签到,获得积分10
1秒前
熬夜波比应助yydy采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
小杨完成签到,获得积分10
2秒前
九号机完成签到 ,获得积分10
3秒前
淡定白枫完成签到,获得积分10
3秒前
kehe!完成签到 ,获得积分0
3秒前
luo完成签到 ,获得积分10
3秒前
4秒前
不爱看文献头疼完成签到,获得积分10
5秒前
淡定的棒球完成签到 ,获得积分10
5秒前
小小小乐完成签到 ,获得积分10
5秒前
跳不起来的大神完成签到 ,获得积分10
6秒前
吕邓宏完成签到 ,获得积分10
6秒前
zlx发布了新的文献求助10
7秒前
单于完成签到,获得积分10
7秒前
neu_zxy1991完成签到,获得积分10
8秒前
fossil完成签到,获得积分10
8秒前
纯情的远山完成签到,获得积分10
9秒前
jojo完成签到 ,获得积分10
9秒前
含糊的无声完成签到 ,获得积分10
11秒前
pluto应助单于采纳,获得10
13秒前
Bethune124完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
Dont_test_me完成签到 ,获得积分10
16秒前
19秒前
炸土豆完成签到 ,获得积分10
22秒前
Litoivda发布了新的文献求助10
24秒前
Gavin完成签到,获得积分10
26秒前
srz楠楠完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
一只橙子完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
lin完成签到,获得积分10
28秒前
ntrip完成签到,获得积分10
28秒前
树莓苹果完成签到,获得积分20
29秒前
吴旭东完成签到,获得积分10
30秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071