OILVEQ: an Italian external quality control scheme for cannabinoids analysis in galenic preparations of cannabis oil

大麻 大麻酚 医学 大麻素 色谱法 化学 精神科 内科学 受体
作者
Maria Concetta Rotolo,Silvia Graziano,Adele Minutillo,Maria Rosaria Varı̀,Simona Pichini,Emilia Marchei
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
标识
DOI:10.1515/cclm-2024-0311
摘要

Abstract Objectives Italy legalized cannabis oil for specific medical conditions (neuropathic pain, refractory epilepsy and other established pathologies) in 2015, but mandates titration of principal cannabinoids before marketing each batch using iphenated techniques coupled with mass spectrometry. To assess reliability of laboratories from the Italian National Health Service in charge of titrating the batches, the Italian National Institute of Health set up an quality control program on determination of Δ9-tetrahydrocannabinol l (THC), cannabidiol (CBD), Δ9-tetrahydrocannabinolic acid A (THCA-A) and cannabidiolic acid (CBDA) in cannabis oil preparations. Methods Two rounds of exercises have been carried out since 2019, involving sixteen Italian laboratories. Five different cannabis oil samples (19-1A and 19-1B for the first round and 22-1A, 22-1B and 22-1C for the second one were prepared and 1 mL amount of each sample was sent to the laboratories. The quantitative performance of each laboratory was assessed calculating the z-score value, a statistical measurement for value’s relationship to the mean of a group of values. Results In the first round, eight out of fourteen laboratories employed an LC-MS while the remaining six used GC-MS. Differently, in the second round, six out of eleven laboratories employed a GC-MS while the remaining five used LC-MS. In the first round, only 28.6 % laboratories achieved an acceptable performance (z-score±2), and all of them used LC-MS as analytical method. In the second round, none of the laboratories achieved an acceptable performance. Satisfactory results, based on z-scores, were generally low (0.0–75.0 %), with only one exception of 100 % for THCA-A determination in sample 22-1B. In the second round, three false negatives (two THC and one CBD by GC-MS determination) were reported while no false positives were described in the blank sample. The two rounds yielded a mean ERR% of 42 % approximately and a mean CV% around 70 % in GC-MS determination. When applying LC-MS determination, the two rounds yielded a mean ERR% of 36 % approximately and a mean CV% around 33 %. Conclusions The obtained results underline the need for a clear and consistent protocol to be adopted by all laboratories intending to include the titration of oily cannabis-based products into their routinely analytical techniques. This emphasis on methodology standardization and participation to quality control schemes is essential for ensuring reliable and accurate measurements, ultimately enhancing the overall effectiveness and reliability of medical cannabis treatments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
DouBo发布了新的文献求助10
1秒前
1秒前
小蘑菇应助飞槐采纳,获得10
1秒前
guoguo完成签到,获得积分10
2秒前
2秒前
DHM发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
lei完成签到,获得积分20
3秒前
归尘应助QAQSS采纳,获得10
3秒前
呆萌冷风发布了新的文献求助10
4秒前
4秒前
Chenly发布了新的文献求助30
5秒前
123完成签到 ,获得积分10
5秒前
5秒前
AyraN完成签到,获得积分10
5秒前
5秒前
6秒前
小牛牛发布了新的文献求助10
6秒前
6秒前
LLHHZZ发布了新的文献求助10
6秒前
6秒前
大模型应助泯珉采纳,获得10
7秒前
KKZNB发布了新的文献求助10
7秒前
李健的小迷弟应助石头采纳,获得10
7秒前
wwwwwwww发布了新的文献求助10
7秒前
忧伤的冰彤完成签到,获得积分10
7秒前
玄月发布了新的文献求助10
7秒前
jias完成签到,获得积分10
8秒前
丘比特应助贾舒涵采纳,获得10
8秒前
范兆飞发布了新的文献求助10
9秒前
喜悦绿旋发布了新的文献求助10
9秒前
lixiang发布了新的文献求助10
9秒前
9秒前
搜集达人应助Will采纳,获得10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851