OILVEQ: an Italian external quality control scheme for cannabinoids analysis in galenic preparations of cannabis oil

大麻 大麻酚 医学 大麻素 色谱法 化学 精神科 内科学 受体
作者
Maria Concetta Rotolo,Silvia Graziano,Adele Minutillo,Maria Rosaria Varı̀,Simona Pichini,Emilia Marchei
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
标识
DOI:10.1515/cclm-2024-0311
摘要

Abstract Objectives Italy legalized cannabis oil for specific medical conditions (neuropathic pain, refractory epilepsy and other established pathologies) in 2015, but mandates titration of principal cannabinoids before marketing each batch using iphenated techniques coupled with mass spectrometry. To assess reliability of laboratories from the Italian National Health Service in charge of titrating the batches, the Italian National Institute of Health set up an quality control program on determination of Δ9-tetrahydrocannabinol l (THC), cannabidiol (CBD), Δ9-tetrahydrocannabinolic acid A (THCA-A) and cannabidiolic acid (CBDA) in cannabis oil preparations. Methods Two rounds of exercises have been carried out since 2019, involving sixteen Italian laboratories. Five different cannabis oil samples (19-1A and 19-1B for the first round and 22-1A, 22-1B and 22-1C for the second one were prepared and 1 mL amount of each sample was sent to the laboratories. The quantitative performance of each laboratory was assessed calculating the z-score value, a statistical measurement for value’s relationship to the mean of a group of values. Results In the first round, eight out of fourteen laboratories employed an LC-MS while the remaining six used GC-MS. Differently, in the second round, six out of eleven laboratories employed a GC-MS while the remaining five used LC-MS. In the first round, only 28.6 % laboratories achieved an acceptable performance (z-score±2), and all of them used LC-MS as analytical method. In the second round, none of the laboratories achieved an acceptable performance. Satisfactory results, based on z-scores, were generally low (0.0–75.0 %), with only one exception of 100 % for THCA-A determination in sample 22-1B. In the second round, three false negatives (two THC and one CBD by GC-MS determination) were reported while no false positives were described in the blank sample. The two rounds yielded a mean ERR% of 42 % approximately and a mean CV% around 70 % in GC-MS determination. When applying LC-MS determination, the two rounds yielded a mean ERR% of 36 % approximately and a mean CV% around 33 %. Conclusions The obtained results underline the need for a clear and consistent protocol to be adopted by all laboratories intending to include the titration of oily cannabis-based products into their routinely analytical techniques. This emphasis on methodology standardization and participation to quality control schemes is essential for ensuring reliable and accurate measurements, ultimately enhancing the overall effectiveness and reliability of medical cannabis treatments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐鹤轩发布了新的文献求助20
刚刚
zhao完成签到,获得积分10
1秒前
超级手套完成签到,获得积分10
2秒前
Destiny完成签到,获得积分10
3秒前
htt完成签到,获得积分20
4秒前
5秒前
5秒前
jkdzp完成签到 ,获得积分10
5秒前
科研通AI6.1应助欢欢采纳,获得10
5秒前
6秒前
6秒前
8秒前
Itazu完成签到,获得积分10
8秒前
9秒前
公西焱发布了新的文献求助10
9秒前
leemiii完成签到 ,获得积分10
10秒前
11秒前
懦弱的含芙完成签到,获得积分10
12秒前
爱吃瑞士卷完成签到 ,获得积分10
12秒前
nancylan发布了新的文献求助10
12秒前
14秒前
lsrlsr完成签到,获得积分10
14秒前
15秒前
鲤鱼完成签到 ,获得积分10
15秒前
15秒前
16秒前
18秒前
可乐发布了新的文献求助10
18秒前
橙子完成签到 ,获得积分10
20秒前
深井冰发布了新的文献求助10
20秒前
man完成签到 ,获得积分10
21秒前
Leon_Kim发布了新的文献求助10
21秒前
xiaolu发布了新的文献求助10
22秒前
22秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
852应助Pan采纳,获得10
25秒前
kevin完成签到,获得积分10
25秒前
负责的靖琪完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978