Predicting weld pool metrics in laser welding of aluminum alloys using data-driven surrogate modeling: A FEA-DoE-GPRN hybrid approach

焊接 有限元法 材料科学 激光束焊接 机械工程 结构工程 实验设计 冶金 工程类 数学 统计
作者
Aparna Duggirala,Bappa Acherjee,S. Mitra
出处
标识
DOI:10.1177/09544089241255927
摘要

Multi-physics computational models based on finite element analysis, offer detailed insights into the dynamics and metrics in the weld pool formed by laser welding. Conversely, data-driven surrogate models provide a cost-effective means to predict desired responses. These models establish statistical or mathematical correlations with input–output data, eliminating the need for additional simulations during design optimization. This study proposes a data-driven surrogate model, employing the Gaussian process regression network (GPRN), to predict weld pool metrics, such as weld width and depth of penetration in laser welding of aluminum alloy. A 3D computational fluid dynamics-based numerical model is initially constructed and experimentally validated to predict weld pool metrics. Subsequent experimental runs, guided by the design of experiments, include various configurations of process parameter settings. The developed numerical model computes weld pool metrics for each experimental run, forming a dataset for training and testing the GPRN model. The GPRN model is evaluated against simulated data, showing adequacy with a mean square error of 1.7 µm and mean absolute percentage error of 10 −7 , with experimental validation further confirming its accuracy, revealing a minimum error of 1.7%, a maximum error of 8%, and an average error of 3%. The key contribution and novelty of this study lie in the development of the hybrid data-driven model, which accurately predicts weld pool metrics while minimizing experimental and computational efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小怪兽完成签到,获得积分10
刚刚
刚刚
cheng4046完成签到,获得积分10
刚刚
Lyra发布了新的文献求助10
刚刚
lmy发布了新的文献求助10
刚刚
刚刚
LSW发布了新的文献求助10
1秒前
wind发布了新的文献求助10
1秒前
z8131110完成签到,获得积分10
1秒前
Alex Young发布了新的文献求助10
1秒前
1秒前
七秒完成签到,获得积分10
1秒前
2秒前
CD完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
wlz发布了新的文献求助10
3秒前
4秒前
牛牛发布了新的文献求助10
4秒前
开心的兔子完成签到,获得积分10
5秒前
6秒前
6秒前
沉默的二娘完成签到,获得积分10
6秒前
随便发布了新的文献求助10
6秒前
prayer发布了新的文献求助10
6秒前
7秒前
十八冠六完成签到,获得积分10
7秒前
LuciusHe发布了新的文献求助20
7秒前
8秒前
8秒前
8秒前
霸气安筠完成签到,获得积分10
8秒前
森ok发布了新的文献求助10
9秒前
小糖发布了新的文献求助10
10秒前
10秒前
Orange应助Profeto采纳,获得30
10秒前
11秒前
lijianguo发布了新的文献求助10
11秒前
落月铭发布了新的文献求助10
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306