Predictive ultrafast laser-induced formation of MoOx using machine learning algorithms

算法 梯度升压 机器学习 均方误差 计算机科学 人工智能 支持向量机 Boosting(机器学习) 光学 材料科学 数学 物理 统计 随机森林
作者
Miroslava Cano Lara,A. Espinal-Jiménez,Santiago Camacho-López,Andrés-Amador García-Granada,Horacio Rostro-González
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:63 (19): 5053-5053 被引量:1
标识
DOI:10.1364/ao.530032
摘要

This research introduces an innovative methodology leveraging machine learning algorithms to predict the outcomes of experimental and numerical tests with femtosecond (fs) laser pulses on 500-nm-thick molybdenum films. The machine learning process encompasses several phases, including data acquisition, pre-processing, and prediction. This framework effectively simulates the interaction between fs laser pulses and the surface of molybdenum thin films, enabling precise control over the creation of MoO x phases. The exceptional precision of fs laser pulses in generating molybdenum oxides at localized micrometer scales is a significant advantage. In this study, we explored and evaluated 13 different machine learning methods for predicting oxide formation results. Our numerical results indicate that the extra trees (ET) and gradient boosting (GB) algorithms provide the best performance in terms of mean squared error, mean absolute error, and R-squared values: 48.44, 3.72, and 1.0 for ET and 32.25, 3.72, and 1.0 for GB. Conversely, support vector regression (SVR) and histogram gradient boosting (HGB) performed the worst, with SVR yielding values of 712.48, 15.27, and 0.163 and HGB yielding values of 434.29, 16.37, and 0.548. One of the most significant aspects of this research is that training these algorithms did not require hyperparameter optimization, and the training and validation process only needed 54 experimental samples. To validate this, we used a technique known as leave-one-out cross-validation, which is a robust validation method when the available data is limited. With this research, we aim to demonstrate the capability of machine learning algorithms in applications where data is limited due to the high cost of real experimentation, as is often the case in the field of optics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助乱武采纳,获得10
刚刚
赘婿应助完美山菡采纳,获得10
4秒前
HongY完成签到,获得积分10
4秒前
6秒前
yu发布了新的文献求助10
6秒前
归尘发布了新的文献求助10
7秒前
bhfhq完成签到,获得积分10
8秒前
11秒前
11秒前
张雯思发布了新的文献求助10
12秒前
yufei发布了新的文献求助10
12秒前
13秒前
14秒前
大喵发布了新的文献求助10
14秒前
大方泥猴桃完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
雪无痕3074发布了新的文献求助10
17秒前
挖井的人完成签到,获得积分10
17秒前
所所应助zzz采纳,获得10
18秒前
肚皮完成签到 ,获得积分10
18秒前
Shantx完成签到,获得积分10
18秒前
郭郭要努力ya完成签到 ,获得积分10
18秒前
乌禅发布了新的文献求助10
19秒前
大喵完成签到,获得积分10
20秒前
20秒前
Xian发布了新的文献求助10
21秒前
舒心映易发布了新的文献求助10
21秒前
高大厉完成签到,获得积分10
22秒前
Akim应助雪无痕3074采纳,获得10
22秒前
22秒前
小方完成签到,获得积分10
23秒前
26秒前
J.发布了新的文献求助20
26秒前
寒冷河马发布了新的文献求助10
27秒前
风清扬应助玄月采纳,获得10
28秒前
轻松的惜芹应助kento采纳,获得50
29秒前
29秒前
汤瀚文完成签到 ,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176