Predictive ultrafast laser-induced formation of MoOx using machine learning algorithms

算法 梯度升压 机器学习 均方误差 计算机科学 人工智能 支持向量机 Boosting(机器学习) 光学 材料科学 数学 物理 统计 随机森林
作者
Miroslava Cano Lara,A. Espinal-Jiménez,Santiago Camacho-López,Andrés-Amador García-Granada,Horacio Rostro-González
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:63 (19): 5053-5053 被引量:1
标识
DOI:10.1364/ao.530032
摘要

This research introduces an innovative methodology leveraging machine learning algorithms to predict the outcomes of experimental and numerical tests with femtosecond (fs) laser pulses on 500-nm-thick molybdenum films. The machine learning process encompasses several phases, including data acquisition, pre-processing, and prediction. This framework effectively simulates the interaction between fs laser pulses and the surface of molybdenum thin films, enabling precise control over the creation of MoO x phases. The exceptional precision of fs laser pulses in generating molybdenum oxides at localized micrometer scales is a significant advantage. In this study, we explored and evaluated 13 different machine learning methods for predicting oxide formation results. Our numerical results indicate that the extra trees (ET) and gradient boosting (GB) algorithms provide the best performance in terms of mean squared error, mean absolute error, and R-squared values: 48.44, 3.72, and 1.0 for ET and 32.25, 3.72, and 1.0 for GB. Conversely, support vector regression (SVR) and histogram gradient boosting (HGB) performed the worst, with SVR yielding values of 712.48, 15.27, and 0.163 and HGB yielding values of 434.29, 16.37, and 0.548. One of the most significant aspects of this research is that training these algorithms did not require hyperparameter optimization, and the training and validation process only needed 54 experimental samples. To validate this, we used a technique known as leave-one-out cross-validation, which is a robust validation method when the available data is limited. With this research, we aim to demonstrate the capability of machine learning algorithms in applications where data is limited due to the high cost of real experimentation, as is often the case in the field of optics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
茸茸茸完成签到,获得积分10
1秒前
sda发布了新的文献求助10
1秒前
2秒前
ZZZ完成签到,获得积分10
3秒前
大个应助sda采纳,获得10
3秒前
4秒前
5秒前
Owen应助咕噜咕噜咕嘟咕嘟采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
m7m完成签到,获得积分10
6秒前
uniondavid完成签到,获得积分10
6秒前
8秒前
9秒前
魔幻的笑珊完成签到,获得积分10
9秒前
乐乐应助trocars采纳,获得10
10秒前
脑洞疼应助闾丘山菡采纳,获得10
11秒前
江筱筱完成签到,获得积分10
12秒前
天真之桃完成签到,获得积分10
13秒前
15秒前
Dmooou完成签到,获得积分10
16秒前
16秒前
19秒前
Rondab应助勤恳的夏之采纳,获得10
20秒前
21秒前
trocars发布了新的文献求助10
21秒前
Amos完成签到,获得积分10
22秒前
Rondab应助WQ采纳,获得10
22秒前
坚定的芷珊完成签到,获得积分10
22秒前
zedhumble发布了新的文献求助10
24秒前
大罗发布了新的文献求助10
25秒前
小豆包发布了新的文献求助30
27秒前
27秒前
28秒前
30秒前
33秒前
Meyako完成签到 ,获得积分10
34秒前
Quinna发布了新的文献求助10
34秒前
小豆包完成签到,获得积分20
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068