Classification model for chlorophyll content using CNN and aerial images

人工智能 航拍照片 遥感 计算机视觉 叶绿素a 叶绿素 模式识别(心理学) 计算机科学 环境科学 地理 植物 生物
作者
Mohd Nazuan Wagimin,Mohammad Hafiz Ismail,Shukor Sanim Mohd Fauzi,Tse Seng Chuah,Zulkiflee Abd Latif,Farrah Melissa Muharam,Nurul Ain Mohd Zaki
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:221: 109006-109006
标识
DOI:10.1016/j.compag.2024.109006
摘要

Chlorophyll content is usually used as a quantitative measurement of plant health. The chlorophyll content is also a continuous number of data type, leading to a regression approach when developing the deep learning model. The regression model will predict the chlorophyll content in number format, which requires experts to analyse the outcome. Nevertheless, the analysis of the outcome could possibly lead to human error in diagnosing the plant's health condition. Therefore, this study proposed a classification approach in developing a deep learning model to analyse the plant's health condition without human intervention. The classification approach requires a discrete group for dependent variables instead of continuous numbers. When forming the chlorophyll content index groups in this study, which are low, optimum and high levels, two research studies were combined to form the groups, which were (1) the product of the standard range of nitrogen value in mango plant and (2) the correlation analysis between nitrogen value and chlorophyll content index. The classification model in this study used transfer learning algorithms, which were InceptionV3, DenseNet121 and ResNet50, with the canopy-scale level of mango plant RGB images with complex leaf structures in an uncontrolled and open area. Based on the findings, the classification model could classify the chlorophyll content index levels on both mango plant images, which were infected and not infected with black sooty mould. The finding also shows that a clearer distribution pattern of spectral information extracted from the mango plant images can influence the performance result of the classification model. Besides that, the starting point of the Digitization Footprint for this study site across the development stages of the classification model was 308.5756 MB/ha. Finally, the overall accuracy performances for the classification models that used the transfer learning algorithms, which were InceptionV3, DenseNet121, and ResNet50, and trained using the images of the mango plant infected with pest were 96.49 %, 92.98 %, and 89.47 %, respectively, and for using the images of the mango plant not infected with pest were 88.10 %, 78.57 %, and 69.05 %, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助qiu采纳,获得10
刚刚
常温可乐应助qiu采纳,获得10
刚刚
yayisheng发布了新的文献求助10
1秒前
3秒前
陈静静发布了新的文献求助10
3秒前
liuxinyu发布了新的文献求助10
3秒前
LHL发布了新的文献求助10
3秒前
4秒前
淡定元珊完成签到,获得积分10
4秒前
5秒前
今后应助雷霆爆爆凯采纳,获得10
5秒前
小蘑菇应助山苍梓采纳,获得10
5秒前
7秒前
qiu完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
Owen应助多摩川的烟花少年采纳,获得10
8秒前
12关闭了12文献求助
9秒前
qiucheng1227发布了新的文献求助10
9秒前
科研通AI6应助yayisheng采纳,获得10
9秒前
11秒前
11秒前
李牧发布了新的文献求助10
12秒前
12秒前
64658应助沧海一声笑采纳,获得10
13秒前
13秒前
浮游应助嘟噜采纳,获得10
13秒前
兴奋的若菱完成签到 ,获得积分10
13秒前
14秒前
dxm发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助30
15秒前
16秒前
16秒前
17秒前
林鑫璐发布了新的文献求助10
18秒前
18秒前
英吉利25发布了新的文献求助20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950360
求助须知:如何正确求助?哪些是违规求助? 4213390
关于积分的说明 13103546
捐赠科研通 3995055
什么是DOI,文献DOI怎么找? 2186753
邀请新用户注册赠送积分活动 1202024
关于科研通互助平台的介绍 1115355