Classification model for chlorophyll content using CNN and aerial images

人工智能 航拍照片 遥感 计算机视觉 叶绿素a 叶绿素 模式识别(心理学) 计算机科学 环境科学 地理 植物 生物
作者
Mohd Nazuan Wagimin,Mohammad Hafiz Ismail,Shukor Sanim Mohd Fauzi,Tse Seng Chuah,Zulkiflee Abd Latif,Farrah Melissa Muharam,Nurul Ain Mohd Zaki
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:221: 109006-109006
标识
DOI:10.1016/j.compag.2024.109006
摘要

Chlorophyll content is usually used as a quantitative measurement of plant health. The chlorophyll content is also a continuous number of data type, leading to a regression approach when developing the deep learning model. The regression model will predict the chlorophyll content in number format, which requires experts to analyse the outcome. Nevertheless, the analysis of the outcome could possibly lead to human error in diagnosing the plant's health condition. Therefore, this study proposed a classification approach in developing a deep learning model to analyse the plant's health condition without human intervention. The classification approach requires a discrete group for dependent variables instead of continuous numbers. When forming the chlorophyll content index groups in this study, which are low, optimum and high levels, two research studies were combined to form the groups, which were (1) the product of the standard range of nitrogen value in mango plant and (2) the correlation analysis between nitrogen value and chlorophyll content index. The classification model in this study used transfer learning algorithms, which were InceptionV3, DenseNet121 and ResNet50, with the canopy-scale level of mango plant RGB images with complex leaf structures in an uncontrolled and open area. Based on the findings, the classification model could classify the chlorophyll content index levels on both mango plant images, which were infected and not infected with black sooty mould. The finding also shows that a clearer distribution pattern of spectral information extracted from the mango plant images can influence the performance result of the classification model. Besides that, the starting point of the Digitization Footprint for this study site across the development stages of the classification model was 308.5756 MB/ha. Finally, the overall accuracy performances for the classification models that used the transfer learning algorithms, which were InceptionV3, DenseNet121, and ResNet50, and trained using the images of the mango plant infected with pest were 96.49 %, 92.98 %, and 89.47 %, respectively, and for using the images of the mango plant not infected with pest were 88.10 %, 78.57 %, and 69.05 %, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的藏鸟完成签到,获得积分10
4秒前
小洪俊熙完成签到,获得积分10
5秒前
小杨发布了新的文献求助10
6秒前
JUAN完成签到,获得积分10
7秒前
不信人间有白头完成签到 ,获得积分10
7秒前
明亮的代灵完成签到 ,获得积分10
7秒前
嗯哼完成签到 ,获得积分10
10秒前
liaomr完成签到 ,获得积分10
13秒前
哈哈完成签到 ,获得积分10
14秒前
14秒前
八八九九九1完成签到,获得积分10
14秒前
ZHZ完成签到,获得积分10
15秒前
OeO完成签到 ,获得积分10
16秒前
Xiaoming完成签到,获得积分0
16秒前
哈哈哈发布了新的文献求助10
18秒前
lang完成签到,获得积分10
18秒前
20秒前
忐忑的天真完成签到 ,获得积分10
20秒前
舒适数据线完成签到,获得积分10
21秒前
优雅的千雁完成签到,获得积分10
22秒前
zz完成签到 ,获得积分10
22秒前
没用的三轮完成签到,获得积分10
22秒前
zw完成签到,获得积分10
23秒前
啊哈啊哈额完成签到,获得积分10
24秒前
土豆淀粉完成签到 ,获得积分10
25秒前
26秒前
青黛完成签到 ,获得积分10
29秒前
爱吃蒸蛋完成签到,获得积分10
30秒前
mayberichard完成签到,获得积分10
30秒前
31秒前
火星上莛完成签到 ,获得积分10
32秒前
fanzi完成签到 ,获得积分10
32秒前
32秒前
chinh完成签到,获得积分10
35秒前
unfeeling8完成签到 ,获得积分10
37秒前
JUNE发布了新的文献求助30
37秒前
38秒前
花花2024完成签到 ,获得积分10
40秒前
胖胖橘完成签到 ,获得积分10
41秒前
独指蜗牛完成签到 ,获得积分10
43秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015