Classification model for chlorophyll content using CNN and aerial images

人工智能 航拍照片 遥感 计算机视觉 叶绿素a 叶绿素 模式识别(心理学) 计算机科学 环境科学 地理 植物 生物
作者
Mohd Nazuan Wagimin,Mohammad Hafiz Ismail,Shukor Sanim Mohd Fauzi,Tse Seng Chuah,Zulkiflee Abd Latif,Farrah Melissa Muharam,Nurul Ain Mohd Zaki
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:221: 109006-109006
标识
DOI:10.1016/j.compag.2024.109006
摘要

Chlorophyll content is usually used as a quantitative measurement of plant health. The chlorophyll content is also a continuous number of data type, leading to a regression approach when developing the deep learning model. The regression model will predict the chlorophyll content in number format, which requires experts to analyse the outcome. Nevertheless, the analysis of the outcome could possibly lead to human error in diagnosing the plant's health condition. Therefore, this study proposed a classification approach in developing a deep learning model to analyse the plant's health condition without human intervention. The classification approach requires a discrete group for dependent variables instead of continuous numbers. When forming the chlorophyll content index groups in this study, which are low, optimum and high levels, two research studies were combined to form the groups, which were (1) the product of the standard range of nitrogen value in mango plant and (2) the correlation analysis between nitrogen value and chlorophyll content index. The classification model in this study used transfer learning algorithms, which were InceptionV3, DenseNet121 and ResNet50, with the canopy-scale level of mango plant RGB images with complex leaf structures in an uncontrolled and open area. Based on the findings, the classification model could classify the chlorophyll content index levels on both mango plant images, which were infected and not infected with black sooty mould. The finding also shows that a clearer distribution pattern of spectral information extracted from the mango plant images can influence the performance result of the classification model. Besides that, the starting point of the Digitization Footprint for this study site across the development stages of the classification model was 308.5756 MB/ha. Finally, the overall accuracy performances for the classification models that used the transfer learning algorithms, which were InceptionV3, DenseNet121, and ResNet50, and trained using the images of the mango plant infected with pest were 96.49 %, 92.98 %, and 89.47 %, respectively, and for using the images of the mango plant not infected with pest were 88.10 %, 78.57 %, and 69.05 %, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
deng发布了新的文献求助10
1秒前
2秒前
JamesPei应助jingzh采纳,获得10
2秒前
Xie发布了新的文献求助10
3秒前
细腻的南霜完成签到,获得积分10
3秒前
4秒前
Owen应助香蕉猴子啦啦啦采纳,获得10
4秒前
等等完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
脑洞疼应助平淡的柜子采纳,获得10
5秒前
Lucas应助小盒采纳,获得10
6秒前
知榕发布了新的文献求助10
8秒前
hbgcld发布了新的文献求助80
8秒前
彭于晏应助Xie采纳,获得10
8秒前
foreverwhy完成签到 ,获得积分10
9秒前
Linsysen发布了新的文献求助10
9秒前
烟花应助约定看星星啊采纳,获得10
10秒前
10秒前
小二郎应助abbytang采纳,获得10
11秒前
13秒前
weifang_liang发布了新的文献求助10
15秒前
Cot90完成签到,获得积分10
16秒前
是我呀吼完成签到,获得积分20
16秒前
多花基因完成签到,获得积分10
16秒前
ding应助zengtsinghua采纳,获得10
17秒前
17秒前
今后应助李联洪采纳,获得10
18秒前
sunjianyu完成签到,获得积分10
18秒前
科目三应助hbgcld采纳,获得80
18秒前
大蛋发布了新的文献求助10
19秒前
19秒前
polop_potato发布了新的文献求助10
21秒前
23秒前
23秒前
Owen应助LPH01采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181693
求助须知:如何正确求助?哪些是违规求助? 4368600
关于积分的说明 13603680
捐赠科研通 4219863
什么是DOI,文献DOI怎么找? 2314259
邀请新用户注册赠送积分活动 1313000
关于科研通互助平台的介绍 1261716