Classification model for chlorophyll content using CNN and aerial images

人工智能 航拍照片 遥感 计算机视觉 叶绿素a 叶绿素 模式识别(心理学) 计算机科学 环境科学 地理 植物 生物
作者
Mohd Nazuan Wagimin,Mohammad Hafiz Ismail,Shukor Sanim Mohd Fauzi,Tse Seng Chuah,Zulkiflee Abd Latif,Farrah Melissa Muharam,Nurul Ain Mohd Zaki
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:221: 109006-109006
标识
DOI:10.1016/j.compag.2024.109006
摘要

Chlorophyll content is usually used as a quantitative measurement of plant health. The chlorophyll content is also a continuous number of data type, leading to a regression approach when developing the deep learning model. The regression model will predict the chlorophyll content in number format, which requires experts to analyse the outcome. Nevertheless, the analysis of the outcome could possibly lead to human error in diagnosing the plant's health condition. Therefore, this study proposed a classification approach in developing a deep learning model to analyse the plant's health condition without human intervention. The classification approach requires a discrete group for dependent variables instead of continuous numbers. When forming the chlorophyll content index groups in this study, which are low, optimum and high levels, two research studies were combined to form the groups, which were (1) the product of the standard range of nitrogen value in mango plant and (2) the correlation analysis between nitrogen value and chlorophyll content index. The classification model in this study used transfer learning algorithms, which were InceptionV3, DenseNet121 and ResNet50, with the canopy-scale level of mango plant RGB images with complex leaf structures in an uncontrolled and open area. Based on the findings, the classification model could classify the chlorophyll content index levels on both mango plant images, which were infected and not infected with black sooty mould. The finding also shows that a clearer distribution pattern of spectral information extracted from the mango plant images can influence the performance result of the classification model. Besides that, the starting point of the Digitization Footprint for this study site across the development stages of the classification model was 308.5756 MB/ha. Finally, the overall accuracy performances for the classification models that used the transfer learning algorithms, which were InceptionV3, DenseNet121, and ResNet50, and trained using the images of the mango plant infected with pest were 96.49 %, 92.98 %, and 89.47 %, respectively, and for using the images of the mango plant not infected with pest were 88.10 %, 78.57 %, and 69.05 %, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANXU发布了新的文献求助10
1秒前
开心就好完成签到 ,获得积分10
1秒前
1秒前
隐形曼青应助hellobaboon采纳,获得10
1秒前
猪猪hero发布了新的文献求助10
1秒前
angelinazh完成签到,获得积分10
3秒前
科研小白完成签到,获得积分10
3秒前
阿辉发布了新的文献求助10
4秒前
别管我在发疯应助samifranco采纳,获得32
4秒前
panyi完成签到,获得积分10
4秒前
科研通AI5应助生物狗采纳,获得10
4秒前
5秒前
非而者厚应助zmrright采纳,获得10
6秒前
啦啦啦啦发布了新的文献求助10
6秒前
bigstone发布了新的文献求助30
6秒前
6秒前
冰冰发布了新的文献求助10
9秒前
10秒前
sss完成签到,获得积分10
10秒前
星辰大海应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
wy.he应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
mumu完成签到,获得积分10
12秒前
12秒前
12秒前
Chief完成签到,获得积分0
12秒前
情怀应助疯狂的月亮采纳,获得10
14秒前
慕青应助孟见你采纳,获得10
14秒前
啊啊啊肥发布了新的文献求助10
15秒前
KongHN完成签到,获得积分10
16秒前
pluto应助能干的孤丝采纳,获得10
16秒前
华仔应助MikL采纳,获得10
17秒前
梦花结发布了新的文献求助10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745081
求助须知:如何正确求助?哪些是违规求助? 3287963
关于积分的说明 10056783
捐赠科研通 3004153
什么是DOI,文献DOI怎么找? 1649530
邀请新用户注册赠送积分活动 785360
科研通“疑难数据库(出版商)”最低求助积分说明 751063