Classification model for chlorophyll content using CNN and aerial images

人工智能 航拍照片 遥感 计算机视觉 叶绿素a 叶绿素 模式识别(心理学) 计算机科学 环境科学 地理 植物 生物
作者
Mohd Nazuan Wagimin,Mohammad Hafiz Ismail,Shukor Sanim Mohd Fauzi,Tse Seng Chuah,Zulkiflee Abd Latif,Farrah Melissa Muharam,Nurul Ain Mohd Zaki
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:221: 109006-109006
标识
DOI:10.1016/j.compag.2024.109006
摘要

Chlorophyll content is usually used as a quantitative measurement of plant health. The chlorophyll content is also a continuous number of data type, leading to a regression approach when developing the deep learning model. The regression model will predict the chlorophyll content in number format, which requires experts to analyse the outcome. Nevertheless, the analysis of the outcome could possibly lead to human error in diagnosing the plant's health condition. Therefore, this study proposed a classification approach in developing a deep learning model to analyse the plant's health condition without human intervention. The classification approach requires a discrete group for dependent variables instead of continuous numbers. When forming the chlorophyll content index groups in this study, which are low, optimum and high levels, two research studies were combined to form the groups, which were (1) the product of the standard range of nitrogen value in mango plant and (2) the correlation analysis between nitrogen value and chlorophyll content index. The classification model in this study used transfer learning algorithms, which were InceptionV3, DenseNet121 and ResNet50, with the canopy-scale level of mango plant RGB images with complex leaf structures in an uncontrolled and open area. Based on the findings, the classification model could classify the chlorophyll content index levels on both mango plant images, which were infected and not infected with black sooty mould. The finding also shows that a clearer distribution pattern of spectral information extracted from the mango plant images can influence the performance result of the classification model. Besides that, the starting point of the Digitization Footprint for this study site across the development stages of the classification model was 308.5756 MB/ha. Finally, the overall accuracy performances for the classification models that used the transfer learning algorithms, which were InceptionV3, DenseNet121, and ResNet50, and trained using the images of the mango plant infected with pest were 96.49 %, 92.98 %, and 89.47 %, respectively, and for using the images of the mango plant not infected with pest were 88.10 %, 78.57 %, and 69.05 %, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
见青山发布了新的文献求助10
1秒前
清脆又晴完成签到,获得积分10
2秒前
2秒前
zwj完成签到,获得积分10
2秒前
2秒前
2秒前
852应助146532采纳,获得10
3秒前
wang666完成签到,获得积分20
3秒前
4秒前
61完成签到 ,获得积分10
5秒前
5秒前
心灵美听荷完成签到 ,获得积分10
5秒前
6秒前
6秒前
2309发布了新的文献求助10
6秒前
iamzcd发布了新的文献求助10
6秒前
7秒前
竹羽完成签到 ,获得积分10
7秒前
烟花应助强仔采纳,获得10
7秒前
sy完成签到,获得积分10
7秒前
7秒前
SMIRTGIRL发布了新的文献求助10
8秒前
龍龖龘发布了新的文献求助10
9秒前
9秒前
10秒前
清蒸鱼完成签到 ,获得积分10
11秒前
ssss完成签到,获得积分10
11秒前
11秒前
Liu_Ci应助吲哚好呀采纳,获得10
12秒前
12秒前
cassidy发布了新的文献求助10
12秒前
哈喽发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
Wang发布了新的文献求助10
14秒前
ding应助遇见馅儿饼采纳,获得10
14秒前
你当像鸟飞往你的山完成签到 ,获得积分10
14秒前
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169845
求助须知:如何正确求助?哪些是违规求助? 2820912
关于积分的说明 7932586
捐赠科研通 2481300
什么是DOI,文献DOI怎么找? 1321727
科研通“疑难数据库(出版商)”最低求助积分说明 633347
版权声明 602561