清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Classification model for chlorophyll content using CNN and aerial images

人工智能 航拍照片 遥感 计算机视觉 叶绿素a 叶绿素 模式识别(心理学) 计算机科学 环境科学 地理 植物 生物
作者
Mohd Nazuan Wagimin,Mohammad Hafiz Ismail,Shukor Sanim Mohd Fauzi,Tse Seng Chuah,Zulkiflee Abd Latif,Farrah Melissa Muharam,Nurul Ain Mohd Zaki
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:221: 109006-109006
标识
DOI:10.1016/j.compag.2024.109006
摘要

Chlorophyll content is usually used as a quantitative measurement of plant health. The chlorophyll content is also a continuous number of data type, leading to a regression approach when developing the deep learning model. The regression model will predict the chlorophyll content in number format, which requires experts to analyse the outcome. Nevertheless, the analysis of the outcome could possibly lead to human error in diagnosing the plant's health condition. Therefore, this study proposed a classification approach in developing a deep learning model to analyse the plant's health condition without human intervention. The classification approach requires a discrete group for dependent variables instead of continuous numbers. When forming the chlorophyll content index groups in this study, which are low, optimum and high levels, two research studies were combined to form the groups, which were (1) the product of the standard range of nitrogen value in mango plant and (2) the correlation analysis between nitrogen value and chlorophyll content index. The classification model in this study used transfer learning algorithms, which were InceptionV3, DenseNet121 and ResNet50, with the canopy-scale level of mango plant RGB images with complex leaf structures in an uncontrolled and open area. Based on the findings, the classification model could classify the chlorophyll content index levels on both mango plant images, which were infected and not infected with black sooty mould. The finding also shows that a clearer distribution pattern of spectral information extracted from the mango plant images can influence the performance result of the classification model. Besides that, the starting point of the Digitization Footprint for this study site across the development stages of the classification model was 308.5756 MB/ha. Finally, the overall accuracy performances for the classification models that used the transfer learning algorithms, which were InceptionV3, DenseNet121, and ResNet50, and trained using the images of the mango plant infected with pest were 96.49 %, 92.98 %, and 89.47 %, respectively, and for using the images of the mango plant not infected with pest were 88.10 %, 78.57 %, and 69.05 %, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助chenyue233采纳,获得10
3秒前
平常的德天完成签到,获得积分10
17秒前
方白秋完成签到,获得积分0
41秒前
43秒前
糟糕的翅膀完成签到,获得积分10
1分钟前
糖果苏扬完成签到 ,获得积分10
1分钟前
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
小朱马发布了新的文献求助10
2分钟前
华仔应助小朱马采纳,获得10
2分钟前
2分钟前
cfy完成签到,获得积分10
3分钟前
紫熊完成签到,获得积分10
3分钟前
无花果应助科研通管家采纳,获得10
3分钟前
负责从丹完成签到,获得积分10
3分钟前
负责从丹发布了新的文献求助10
4分钟前
狂野的含烟完成签到 ,获得积分10
4分钟前
sissiarno应助科研通管家采纳,获得200
5分钟前
一盏壶完成签到,获得积分10
6分钟前
gmc完成签到 ,获得积分10
6分钟前
苗苗完成签到 ,获得积分10
6分钟前
萝卜猪完成签到,获得积分10
6分钟前
sadh2完成签到 ,获得积分10
7分钟前
leo完成签到 ,获得积分10
7分钟前
Owen应助ldtbest0525采纳,获得10
7分钟前
8分钟前
chenyue233发布了新的文献求助10
8分钟前
大医仁心完成签到 ,获得积分10
9分钟前
Chen完成签到 ,获得积分10
9分钟前
南星完成签到 ,获得积分10
9分钟前
10分钟前
迷人书蝶完成签到 ,获得积分10
10分钟前
11发布了新的文献求助30
10分钟前
10分钟前
ldtbest0525发布了新的文献求助10
10分钟前
ldtbest0525完成签到,获得积分10
10分钟前
10分钟前
菠萝发布了新的文献求助10
11分钟前
小二郎应助菠萝采纳,获得10
11分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5255238
求助须知:如何正确求助?哪些是违规求助? 4417869
关于积分的说明 13751833
捐赠科研通 4290825
什么是DOI,文献DOI怎么找? 2354400
邀请新用户注册赠送积分活动 1350997
关于科研通互助平台的介绍 1311445