亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification model for chlorophyll content using CNN and aerial images

人工智能 航拍照片 遥感 计算机视觉 叶绿素a 叶绿素 模式识别(心理学) 计算机科学 环境科学 地理 植物 生物
作者
Mohd Nazuan Wagimin,Mohammad Hafiz Ismail,Shukor Sanim Mohd Fauzi,Tse Seng Chuah,Zulkiflee Abd Latif,Farrah Melissa Muharam,Nurul Ain Mohd Zaki
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:221: 109006-109006
标识
DOI:10.1016/j.compag.2024.109006
摘要

Chlorophyll content is usually used as a quantitative measurement of plant health. The chlorophyll content is also a continuous number of data type, leading to a regression approach when developing the deep learning model. The regression model will predict the chlorophyll content in number format, which requires experts to analyse the outcome. Nevertheless, the analysis of the outcome could possibly lead to human error in diagnosing the plant's health condition. Therefore, this study proposed a classification approach in developing a deep learning model to analyse the plant's health condition without human intervention. The classification approach requires a discrete group for dependent variables instead of continuous numbers. When forming the chlorophyll content index groups in this study, which are low, optimum and high levels, two research studies were combined to form the groups, which were (1) the product of the standard range of nitrogen value in mango plant and (2) the correlation analysis between nitrogen value and chlorophyll content index. The classification model in this study used transfer learning algorithms, which were InceptionV3, DenseNet121 and ResNet50, with the canopy-scale level of mango plant RGB images with complex leaf structures in an uncontrolled and open area. Based on the findings, the classification model could classify the chlorophyll content index levels on both mango plant images, which were infected and not infected with black sooty mould. The finding also shows that a clearer distribution pattern of spectral information extracted from the mango plant images can influence the performance result of the classification model. Besides that, the starting point of the Digitization Footprint for this study site across the development stages of the classification model was 308.5756 MB/ha. Finally, the overall accuracy performances for the classification models that used the transfer learning algorithms, which were InceptionV3, DenseNet121, and ResNet50, and trained using the images of the mango plant infected with pest were 96.49 %, 92.98 %, and 89.47 %, respectively, and for using the images of the mango plant not infected with pest were 88.10 %, 78.57 %, and 69.05 %, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助BLESSING采纳,获得10
3秒前
汪鸡毛完成签到 ,获得积分10
11秒前
24秒前
24秒前
44秒前
美丽依波发布了新的文献求助10
47秒前
倪妮发布了新的文献求助30
49秒前
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
小二郎应助111采纳,获得10
1分钟前
倪妮发布了新的文献求助30
2分钟前
2分钟前
19900420完成签到 ,获得积分10
2分钟前
2分钟前
风趣的灵枫完成签到 ,获得积分10
3分钟前
3分钟前
倪妮发布了新的文献求助10
3分钟前
3分钟前
kimk发布了新的文献求助10
3分钟前
桥西小河完成签到 ,获得积分10
3分钟前
与水皆水发布了新的文献求助10
3分钟前
3分钟前
kimk完成签到,获得积分20
3分钟前
耍酷如柏完成签到,获得积分10
4分钟前
4分钟前
充电宝应助倪妮采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
科研通AI2S应助离雨采纳,获得10
5分钟前
5分钟前
倪妮发布了新的文献求助30
5分钟前
希望天下0贩的0应助葛力采纳,获得10
5分钟前
5分钟前
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
arte完成签到 ,获得积分10
6分钟前
欢呼若南发布了新的文献求助10
7分钟前
7分钟前
charliechen完成签到 ,获得积分10
7分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104876
求助须知:如何正确求助?哪些是违规求助? 4314954
关于积分的说明 13443908
捐赠科研通 4143397
什么是DOI,文献DOI怎么找? 2270391
邀请新用户注册赠送积分活动 1272876
关于科研通互助平台的介绍 1209871