Precision Atomistic Structures of Actinium-/Radium-/Barium-Doped Lanthanide Nanoconstructs for Radiotherapeutic Applications

镧系元素 材料科学 分子动力学 纳米尺度 纳米颗粒 纳米技术 化学物理 化学 计算化学 离子 有机化学
作者
Monojoy Goswami,Miguel Toro-González,Jisue Moon,Sandra Davern
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (26): 16577-16588
标识
DOI:10.1021/acsnano.3c13213
摘要

Lanthanide vanadate (LnVO4) nanoconstructs have generated considerable interest in radiotherapeutic applications as a medium for nanoscale-targeted drug delivery. For cancer treatment, LnVO4 nanoconstructs have shown promise in encapsulating and retaining radionuclides that emit alpha-particles. In this work, we examined the structure formation of LnVO4 nanoconstructs doped with actinium (Ac) and radium (Ra), both experimentally and using large-scale atomistic molecular dynamics simulations. LnVO4 nanoconstructs were synthesized via a precipitation method in aqueous media. The reaction conditions and elemental compositions were varied to control the structure, fluorescence properties, and size distribution of the LnVO4 nanoconstructs. LnVO4 nanoconstructs were characterized by X-ray diffraction, Raman spectroscopy, and fluorescence spectroscopy. Molecular dynamics simulations were performed to obtain a fundamental understanding of the structure–property relationship between radionuclides and LnVO4 nanoconstructs at the atomic length scale. Molecular dynamics simulations with well-established force field (FF) parameters show that Ra atoms tend to distribute across the nanoconstructs' surface in a broader coordination shell, while the Ac atoms are arranged inside a smaller coordination shell within the nanocluster. The Ba atoms prefer to self-assemble around the surface. These theoretical/simulation predictions of the atomistic structures and an understanding of the relationship between radionuclides and LnVO4 nanoconstructs at the atomic scale are important because they provide design principles for the future development of nanoconstructs for targeted radionuclide delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半雨叹完成签到,获得积分10
刚刚
充电宝应助huangsi采纳,获得10
刚刚
1秒前
今后应助酷炫若枫采纳,获得10
2秒前
噗噗发布了新的文献求助10
2秒前
呆鸥完成签到,获得积分10
3秒前
模糊中正应助36456657采纳,获得50
3秒前
解惑发布了新的文献求助10
4秒前
4秒前
月辰完成签到 ,获得积分10
4秒前
DodoWang发布了新的文献求助10
4秒前
5秒前
大模型应助南风吹梦采纳,获得10
5秒前
明亮灭绝完成签到,获得积分10
6秒前
7秒前
满意向雁发布了新的文献求助10
7秒前
可爱迎夏完成签到,获得积分10
8秒前
wanci应助WRWRWR采纳,获得30
9秒前
NexusExplorer应助噗噗采纳,获得10
9秒前
mhl11应助明亮念梦采纳,获得10
10秒前
10秒前
10秒前
月辰关注了科研通微信公众号
11秒前
bai发布了新的文献求助10
11秒前
12秒前
水豚发布了新的文献求助10
12秒前
在水一方应助大成子采纳,获得10
13秒前
LIGANG1111完成签到 ,获得积分10
13秒前
dwx完成签到,获得积分10
14秒前
汉堡包应助misalia采纳,获得10
14秒前
14秒前
GT发布了新的文献求助10
14秒前
xiyinzhiwu发布了新的文献求助10
14秒前
满意向雁完成签到,获得积分10
14秒前
15秒前
SKY完成签到,获得积分10
15秒前
SSS水鱼完成签到 ,获得积分10
15秒前
yq421421完成签到,获得积分10
16秒前
吃火锅不蘸料完成签到,获得积分10
17秒前
奋斗枫完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300441
求助须知:如何正确求助?哪些是违规求助? 2935034
关于积分的说明 8471600
捐赠科研通 2608634
什么是DOI,文献DOI怎么找? 1424341
科研通“疑难数据库(出版商)”最低求助积分说明 661991
邀请新用户注册赠送积分活动 645653