DMSA-UNet: Dual Multi-Scale Attention makes UNet more strong for medical image segmentation

对偶(语法数字) 比例(比率) 分割 人工智能 计算机视觉 计算机科学 图像(数学) 地图学 地理 艺术 文学类
作者
Xiang Li,Chong Fu,Qun Wang,Wenchao Zhang,Chiu‐Wing Sham,Junxin Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 112050-112050 被引量:5
标识
DOI:10.1016/j.knosys.2024.112050
摘要

Convolutional Neural Networks (CNNs), particularly UNet, have become prevalent in medical image segmentation tasks. However, CNNs inherently struggle to capture global dependencies owing to their intrinsic localities. Although Transformers have shown superior performance in modeling global dependencies, they encounter the challenges of high model complexity and dependencies on large-scale pre-trained models. Furthermore, the current attention mechanisms of Transformers only consider single-scale feature interactions, making it difficult to analyze feature correlations at different scales in the same attention layer. In this paper, we propose DMSA-UNet, which strengthens the global analysis capability and maximally preserves the local inductive bias capability while maintaining low model complexity. Specifically, we reformulate vanilla self-attention as efficient Dual Multi-Scale Attention (DMSA) that captures multi-scale-enhanced global information along both spatial and channel dimensions with linear complexity and pixel granularity. We also introduce a context-gated linear unit in DMSA for each feature to obtain adaptive attention based on neighboring contexts. To preserve the convolutional properties, DMSAs are inserted directly between the UNet's convolutional blocks rather than replacing them. Because DMSA has multi-scale adaptive aggregation capability, the deepest convolutional block of UNet is removed to mitigate the noise interference caused by fixed convolutional kernels with large receptive fields. We further leverage efficient convolution to reduce computational redundancy. DMSA-UNet is highly competitive in terms of model complexity, with 33% fewer parameters and 15% fewer FLOPs (at 2242 resolution) than UNet. Extensive experimental results on four different medical datasets demonstrate that DMSA-UNet outperforms other state-of-the-art approaches without any pre-trained models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LT完成签到,获得积分10
刚刚
含蓄灵薇完成签到 ,获得积分10
刚刚
zhengzehong完成签到,获得积分10
1秒前
1秒前
稻草人完成签到 ,获得积分10
3秒前
zho发布了新的文献求助30
4秒前
4秒前
cc只会嘻嘻完成签到 ,获得积分10
4秒前
zink驳回了ding应助
4秒前
习习发布了新的文献求助10
4秒前
经法发布了新的文献求助10
5秒前
5秒前
5秒前
tong完成签到,获得积分10
5秒前
L~完成签到,获得积分10
5秒前
kyokukou完成签到,获得积分10
5秒前
xiaofeiyu完成签到,获得积分10
5秒前
大力曲奇完成签到,获得积分10
6秒前
乐乐应助崔梦楠采纳,获得10
6秒前
6秒前
6秒前
无奈梦岚完成签到,获得积分10
6秒前
yug发布了新的文献求助10
6秒前
蒋时晏完成签到,获得积分0
7秒前
JamesPei应助zz采纳,获得10
7秒前
MADKAI发布了新的文献求助10
7秒前
7秒前
脑洞疼应助Leexxxhaoo采纳,获得10
8秒前
8秒前
8秒前
RC_Wang应助东东采纳,获得10
8秒前
大脸妹发布了新的文献求助10
8秒前
两张发布了新的文献求助10
9秒前
9秒前
Akim应助执着的小蘑菇采纳,获得10
9秒前
调研昵称发布了新的文献求助10
9秒前
念念发布了新的文献求助10
10秒前
畅快的鱼发布了新的文献求助10
10秒前
搞怪藏今完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678