Enhanced Electric Breakdown Strength and Excellent Recoverable Storing Density in Batio3-Based Ceramic Via Regulating Polyvinyl Alcohol Contents in Viscous Polymer Processing

聚乙烯醇 陶瓷 材料科学 聚合物 复合材料 化学工程 工程类
作者
Xing Zhao,Minghui He,Xinyu Zeng,Qin Li,Guanghua Wu,Fukang Chen,Shaofei Zhang,Jinfeng Sun,A. N. Vtyurin,Yan Yan,Haibo Zhang,Gang Liu
标识
DOI:10.2139/ssrn.4852926
摘要

Despite as the key component in modern electronic devices or power systems, ceramic dielectric capacitors have drawbacks like low energy storage density and efficiency that limits their extensively wide application. Compared to the frequently utilized composition modification, this work adopted a different route to improve energy storage performance. 0.98Ba0.65Sr0.245Bi0.07TiO3-0.02Ce (BSBT-Ce) Pb-free ceramics with different PVA contents were prepared through viscous polymer processing. The rheological and energy storing performance were systematically studied. It can be seen that high PVA content results in more pores and larger grain sizes that will deteriorate the breakdown strength of ceramics. The highest breakdown strength is reaching 420 kV/cm while the concentration of PVA was 5 wt%. The mechanism of grain sizes on breakdown strength (BDS) is studied by electrical tree simulation based on COMSOL. Obviously, viscous polymer processing with proper PVA content is very effective to generate dense and homogenous structures. Finally, the ceramic with 5 wt% PVA possesses a high density up to 4.41 J/cm3 and an efficiency of about 84.21 % at 420 kV/cm. Simultaneously, this ceramic owns improved stability of both temperature (30 ~ 150 °C) and frequency (1 ~ 300 Hz) at 350 kV/cm, while the η keeping above 90 % and Wrec exceeding 3.6 J/cm3. The pulse performance with a power density about 245.74 MW/cm3 and discharge time around 0.075 μs suggests the developed composition owns very good potential for actual application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Roman完成签到,获得积分10
刚刚
故意的怀曼完成签到,获得积分10
刚刚
neme完成签到,获得积分10
刚刚
小于爱吃鱼完成签到,获得积分20
1秒前
511完成签到,获得积分10
1秒前
嗯呢应助dream采纳,获得10
1秒前
章半仙发布了新的文献求助10
2秒前
2秒前
冷艳的纸鹤完成签到,获得积分10
3秒前
Sparks关注了科研通微信公众号
3秒前
zeroayanami0完成签到,获得积分10
3秒前
Cyrus2022完成签到,获得积分10
3秒前
3秒前
笔画完成签到,获得积分10
3秒前
zxx完成签到,获得积分10
3秒前
3秒前
3秒前
至秦发布了新的文献求助30
4秒前
4秒前
5秒前
5秒前
6秒前
愤怒的傲丝完成签到,获得积分10
6秒前
angelinekitty完成签到,获得积分10
6秒前
活泼的大船完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
大白应助hood采纳,获得10
7秒前
隐形曼青应助饼干采纳,获得10
7秒前
打铁佬发布了新的文献求助10
7秒前
FashionBoy应助柚柚子采纳,获得10
8秒前
田様应助neme采纳,获得10
8秒前
优秀雁山发布了新的文献求助10
9秒前
求助人员发布了新的文献求助10
9秒前
snotman完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
大个应助687采纳,获得10
9秒前
123完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651984
求助须知:如何正确求助?哪些是违规求助? 4786417
关于积分的说明 15057609
捐赠科研通 4810610
什么是DOI,文献DOI怎么找? 2573282
邀请新用户注册赠送积分活动 1529204
关于科研通互助平台的介绍 1488110