Ni-Rich Cathode Evolution: Exploring Electrochemical Dynamics and Strategic Modifications to Combat Degradation

材料科学 阴极 降级(电信) 电化学 纳米技术 工程物理 化学物理 化学工程 电气工程 电极 物理化学 工程类 物理 化学
作者
Adil Saleem,Leon L. Shaw,Rashid Iqbal,Arshad Hussain,Abdul Rehman Akbar,Bushra Jabar,Sajid Rauf,Muhammad K. Majeed
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:: 103440-103440
标识
DOI:10.1016/j.ensm.2024.103440
摘要

Nickel (Ni)-rich cathode materials hold immense promise for high-energy-density lithium-ion batteries (LIBs), yet their widespread deployment is hampered by significant challenges related to structural and interfacial degradation. These include rapid capacity fading, which diminishes their long-term performance, and the risk of thermal runaway caused by crystal disintegration, leading to safety concerns. Additionally, interfacial instability poses a hurdle to the widespread adoption of these cathodes in commercial applications. Addressing these issues is crucial for the successful commercialization of layered Ni-rich cathodes in energy storage systems. This paper provides a comprehensive analysis of the electrochemical dynamics underlying the degradation mechanisms in Ni-rich cathodes and explores innovative modification strategies to mitigate these issues. Through an in-depth investigation, we uncover the intricate processes leading to voltage fade, capacity decay, and structural instability. Utilizing advanced characterization techniques, including in situ and operando methodologies, we gain real-time insights into the degradation mechanisms. Furthermore, this study delves into cutting-edge modification strategies, such as surface coatings, doping techniques, and nano-structuring approaches, aimed at enhancing the stability of Ni-rich cathode materials. By synthesizing knowledge from electrochemical dynamics and innovative modification strategies, this research contributes valuable insights for the development of high-performance and long-lasting LIBs, essential for the future of energy storage and electric transportation technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Fjj应助英勇的电话采纳,获得10
1秒前
SciGPT应助李李采纳,获得10
2秒前
阿盛发布了新的文献求助10
2秒前
3秒前
善学以致用应助小田采纳,获得10
6秒前
7秒前
7秒前
想疯发布了新的文献求助10
9秒前
10秒前
Two-Capitals发布了新的文献求助10
12秒前
SciGPT应助无语的如音采纳,获得10
16秒前
16秒前
17秒前
19秒前
无情凡松发布了新的文献求助30
19秒前
追梦完成签到 ,获得积分10
19秒前
黄小北发布了新的文献求助10
19秒前
Layace发布了新的文献求助10
23秒前
wanci应助易四夕采纳,获得10
24秒前
谢会会完成签到 ,获得积分10
25秒前
疯狂老马完成签到,获得积分10
26秒前
曹小仙男完成签到 ,获得积分10
26秒前
寻道图强应助ljh1771采纳,获得30
27秒前
28秒前
科研工作者完成签到,获得积分10
29秒前
尽如完成签到,获得积分10
31秒前
李李发布了新的文献求助10
32秒前
CipherSage应助科研通管家采纳,获得10
32秒前
Orange应助科研通管家采纳,获得10
32秒前
Luisa完成签到,获得积分10
35秒前
Lucas应助TingtingGZ采纳,获得10
35秒前
lxb完成签到,获得积分10
35秒前
38秒前
39秒前
我超凶的完成签到,获得积分10
40秒前
40秒前
李李完成签到,获得积分20
42秒前
42秒前
无辜的蜗牛完成签到 ,获得积分10
43秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140496
求助须知:如何正确求助?哪些是违规求助? 2791382
关于积分的说明 7798716
捐赠科研通 2447682
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194