掷骰子
分割
棱锥(几何)
人工智能
计算机科学
功能(生物学)
图像(数学)
图像分割
模式识别(心理学)
数学
统计
几何学
进化生物学
生物
作者
Nabila Abraham,Naimul Khan
出处
期刊:Cornell University - arXiv
日期:2018-01-01
被引量:9
标识
DOI:10.48550/arxiv.1810.07842
摘要
We propose a generalized focal loss function based on the Tversky index to address the issue of data imbalance in medical image segmentation. Compared to the commonly used Dice loss, our loss function achieves a better trade off between precision and recall when training on small structures such as lesions. To evaluate our loss function, we improve the attention U-Net model by incorporating an image pyramid to preserve contextual features. We experiment on the BUS 2017 dataset and ISIC 2018 dataset where lesions occupy 4.84% and 21.4% of the images area and improve segmentation accuracy when compared to the standard U-Net by 25.7% and 3.6%, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI