Robust LSTM With Tuned-PSO and Bifold-Attention Mechanism for Analyzing Multivariate Time-Series

计算机科学 超参数 自回归积分移动平均 时间序列 人工智能 系列(地层学) 多元统计 机器学习 北京 政治学 生物 古生物学 中国 法学
作者
Andri Pranolo,Yingchi Mao,Aji Prasetya Wibawa,Agung Bella Putra Utama,Felix Andika Dwiyanto
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 78423-78434 被引量:30
标识
DOI:10.1109/access.2022.3193643
摘要

The need for accurate time-series results is badly demanding. LSTM has been applied for forecasting time series, which is generated when variables are observed at discrete and equal time intervals. Nevertheless, the problem of determining hyperparameters with a relatively high random rate will reduce the accuracy of the prediction results. This paper aims to promote LSTM with tuned-PSO and Bifold-Attention mechanism. PSO optimizes LSTM hyperparameters, and Bifold-attention mechanism selects the optimal input for LSTM. An accurate, adaptive, and robust time-series forecasting model is the main contribution, compared with ARIMA, MLP, LSTM, PSO-LSTM, A-LSTM, and PSO-A-LSTM. The model comparison is based on the accuracy of each model in forecasting Beijing PM2.5, Beijing Multi-Site, Air Quality, Appliances Energy, Wind Speed, and Traffic Flow. Proposed PSO Bifold-Attention LSTM has lower MAPE and RMSE than baselines. In other words, the model outperformed all LSTM base models in this study. The proposed model’s accuracy is adaptable in daily, weekly, and monthly multivariate time-series datasets. This ground-breaking innovation is valuable for time-series analysis research, particularly the implementation of deep learning for time-series forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
hao12359发布了新的文献求助30
1秒前
1秒前
掌柜发布了新的文献求助10
2秒前
Ellen完成签到,获得积分10
2秒前
111发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
沉默的语堂完成签到,获得积分10
4秒前
搜集达人应助111采纳,获得10
5秒前
mmqq发布了新的文献求助10
5秒前
科学家完成签到,获得积分10
6秒前
6秒前
kkx发布了新的文献求助50
7秒前
7秒前
7秒前
7秒前
言余应助难得糊涂岳麓山采纳,获得10
7秒前
言余应助难得糊涂岳麓山采纳,获得10
7秒前
7秒前
7秒前
言余应助难得糊涂岳麓山采纳,获得10
7秒前
言余应助难得糊涂岳麓山采纳,获得10
7秒前
7秒前
言余应助难得糊涂岳麓山采纳,获得10
7秒前
言余应助难得糊涂岳麓山采纳,获得10
7秒前
我一定要坚持下去完成签到,获得积分20
8秒前
8秒前
甜甜玫瑰应助研妍采纳,获得10
8秒前
NNNN发布了新的文献求助10
9秒前
风雪夜归人完成签到,获得积分10
9秒前
暴躁的沂完成签到 ,获得积分10
10秒前
科学家发布了新的文献求助10
10秒前
赘婿应助科研小白采纳,获得10
10秒前
10秒前
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144482
求助须知:如何正确求助?哪些是违规求助? 2796014
关于积分的说明 7817418
捐赠科研通 2452067
什么是DOI,文献DOI怎么找? 1304867
科研通“疑难数据库(出版商)”最低求助积分说明 627330
版权声明 601432