Kalman filtering with state constraints: a survey of linear and nonlinear algorithms

卡尔曼滤波器 控制理论(社会学) 非线性系统 国家(计算机科学) 计算机科学 算法 线性系统 状态向量 应用数学
作者
Daniel J. Simon
出处
期刊:Iet Control Theory and Applications [Institution of Electrical Engineers]
卷期号:4 (8): 1303-1318 被引量:708
标识
DOI:10.1049/iet-cta.2009.0032
摘要

The Kalman filter is the minimum-variance state estimator for linear dynamic systems with Gaussian noise. Even if the noise is non-Gaussian, the Kalman filter is the best linear estimator. For nonlinear systems it is not possible, in general, to derive the optimal state estimator in closed form, but various modifications of the Kalman filter can be used to estimate the state. These modifications include the extended Kalman filter, the unscented Kalman filter, and the particle filter. Although the Kalman filter and its modifications are powerful tools for state estimation, we might have information about a system that the Kalman filter does not incorporate. For example, we may know that the states satisfy equality or inequality constraints. In this case we can modify the Kalman filter to exploit this additional information and get better filtering performance than the Kalman filter provides. This paper provides an overview of various ways to incorporate state constraints in the Kalman filter and its nonlinear modifications. If both the system and state constraints are linear, then all of these different approaches result in the same state estimate, which is the optimal constrained linear state estimate. If either the system or constraints are nonlinear, then constrained filtering is, in general, not optimal, and different approaches give different results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白杨完成签到 ,获得积分10
刚刚
1秒前
来自三百发布了新的文献求助30
1秒前
yemuan完成签到,获得积分10
2秒前
Elian发布了新的文献求助10
3秒前
3秒前
ysq完成签到,获得积分10
4秒前
5秒前
Bilipear发布了新的文献求助10
6秒前
球球发布了新的文献求助10
6秒前
6秒前
派总完成签到,获得积分10
7秒前
8秒前
ghost应助thought采纳,获得10
8秒前
8秒前
8秒前
wanci应助鲁西西采纳,获得10
9秒前
10秒前
宋欢发布了新的文献求助10
11秒前
11秒前
Wang完成签到 ,获得积分10
12秒前
abc发布了新的文献求助10
12秒前
研友_VZG7GZ应助fanfan采纳,获得10
12秒前
wenwen999完成签到 ,获得积分10
13秒前
华仔应助陈石头采纳,获得10
14秒前
NCS完成签到 ,获得积分10
14秒前
风123发布了新的文献求助10
15秒前
ziyue发布了新的文献求助10
15秒前
bao完成签到,获得积分10
16秒前
爆米花应助wangtingyu采纳,获得10
16秒前
sisyphus完成签到,获得积分10
16秒前
17秒前
孔踏歌完成签到,获得积分10
18秒前
19秒前
我是老大应助长生采纳,获得10
19秒前
隐形曼青应助清新的秋珊采纳,获得10
20秒前
细心的代天完成签到 ,获得积分10
20秒前
21秒前
风中叶子发布了新的文献求助10
22秒前
孔踏歌发布了新的文献求助10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308114
求助须知:如何正确求助?哪些是违规求助? 2941617
关于积分的说明 8504720
捐赠科研通 2616297
什么是DOI,文献DOI怎么找? 1429556
科研通“疑难数据库(出版商)”最低求助积分说明 663807
邀请新用户注册赠送积分活动 648748