已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes

估计员 计算机科学 数学优化 似然函数 随机微分方程 随机波动 估计理论 应用数学 数学 波动性(金融) 计量经济学 算法 统计
作者
Garland Durham,A. Ronald Gallant
出处
期刊:Journal of Business & Economic Statistics [Informa]
卷期号:20 (3): 297-338 被引量:388
标识
DOI:10.1198/073500102288618397
摘要

Stochastic differential equations often provide a convenient way to describe the dynamics of economic and financial data, and a great deal of effort has been expended searching for efficient ways to estimate models based on them. Maximum likelihood is typically the estimator of choice; however, since the transition density is generally unknown, one is forced to approximate it. The simulation-based approach suggested by Pedersen (1995) has great theoretical appeal, but previously available implementations have been computationally costly. We examine a variety of numerical techniques designed to improve the performance of this approach. Synthetic data generated by a Cox-Ingersoll-Ross model with parameters calibrated to match monthly observations of the U.S. short-term interest rate are used as a test case. Since the likelihood function of this process is known, the quality of the approximations can be easily evaluated. On datasets with 1,000 observations, we are able to approximate the maximum likelihood estimator with negligible error in well under 1 min. This represents something on the order of a 10,000-fold reduction in computational effort as compared to implementations without these enhancements. With other parameter settings designed to stress the methodology, performance remains strong. These ideas are easily generalized to multivariate settings and (with some additional work) to latent variable models. To illustrate, we estimate a simple stochastic volatility model of the U.S. short-term interest rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助有丶神采纳,获得10
2秒前
2秒前
qianzheng应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
所所应助鲁璐采纳,获得10
3秒前
Jane发布了新的文献求助10
3秒前
可爱的函函应助wentao采纳,获得10
6秒前
6秒前
10秒前
出过门完成签到 ,获得积分10
11秒前
qqqyoyoyo发布了新的文献求助10
11秒前
Chemistry发布了新的文献求助10
12秒前
Ava应助小蜗牛采纳,获得10
13秒前
乖拉完成签到,获得积分10
14秒前
静待花开发布了新的文献求助10
15秒前
华仔应助qqqyoyoyo采纳,获得10
15秒前
Lucas应助慕冰蝶采纳,获得10
19秒前
21秒前
sseekker完成签到,获得积分10
21秒前
无语死了完成签到 ,获得积分20
23秒前
呀呀呀呀完成签到,获得积分10
25秒前
无语死了关注了科研通微信公众号
27秒前
宜醉宜游宜睡应助wwdd采纳,获得10
29秒前
30秒前
狂野以松完成签到,获得积分10
33秒前
安静的滑板应助tian采纳,获得10
37秒前
ycw7777发布了新的文献求助10
37秒前
39秒前
41秒前
45秒前
么么么发布了新的文献求助10
45秒前
安静的滑板应助tian采纳,获得10
46秒前
46秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219517
求助须知:如何正确求助?哪些是违规求助? 2868333
关于积分的说明 8160589
捐赠科研通 2535388
什么是DOI,文献DOI怎么找? 1367808
科研通“疑难数据库(出版商)”最低求助积分说明 645094
邀请新用户注册赠送积分活动 618441