Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes

估计员 计算机科学 数学优化 似然函数 随机微分方程 随机波动 估计理论 应用数学 数学 波动性(金融) 计量经济学 算法 统计
作者
Garland Durham,A. Ronald Gallant
出处
期刊:Journal of Business & Economic Statistics [Informa]
卷期号:20 (3): 297-338 被引量:388
标识
DOI:10.1198/073500102288618397
摘要

Stochastic differential equations often provide a convenient way to describe the dynamics of economic and financial data, and a great deal of effort has been expended searching for efficient ways to estimate models based on them. Maximum likelihood is typically the estimator of choice; however, since the transition density is generally unknown, one is forced to approximate it. The simulation-based approach suggested by Pedersen (1995) has great theoretical appeal, but previously available implementations have been computationally costly. We examine a variety of numerical techniques designed to improve the performance of this approach. Synthetic data generated by a Cox-Ingersoll-Ross model with parameters calibrated to match monthly observations of the U.S. short-term interest rate are used as a test case. Since the likelihood function of this process is known, the quality of the approximations can be easily evaluated. On datasets with 1,000 observations, we are able to approximate the maximum likelihood estimator with negligible error in well under 1 min. This represents something on the order of a 10,000-fold reduction in computational effort as compared to implementations without these enhancements. With other parameter settings designed to stress the methodology, performance remains strong. These ideas are easily generalized to multivariate settings and (with some additional work) to latent variable models. To illustrate, we estimate a simple stochastic volatility model of the U.S. short-term interest rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ll发布了新的文献求助10
2秒前
共享精神应助mutong采纳,获得10
2秒前
2秒前
小新没蜡笔完成签到,获得积分10
3秒前
orixero应助liang2508采纳,获得10
3秒前
华仔应助吴西西采纳,获得10
4秒前
4秒前
5秒前
chen完成签到,获得积分20
6秒前
今后应助友好亚男采纳,获得10
6秒前
6秒前
6秒前
袄猴发布了新的文献求助10
7秒前
可爱的函函应助DodoWang采纳,获得20
7秒前
NJD应助直率飞丹采纳,获得10
8秒前
张艺馨完成签到 ,获得积分10
8秒前
8秒前
许自通完成签到,获得积分10
9秒前
9秒前
deer发布了新的文献求助10
9秒前
MyAI发布了新的文献求助10
10秒前
Provence发布了新的文献求助20
11秒前
斯文败类应助草莓莓莓采纳,获得10
11秒前
chen发布了新的文献求助10
11秒前
12秒前
糖豆完成签到,获得积分10
12秒前
周粥舟完成签到,获得积分10
14秒前
Ll完成签到 ,获得积分20
14秒前
乐乐应助lu_zhqi采纳,获得10
15秒前
华仔应助chen采纳,获得10
15秒前
16秒前
17秒前
17秒前
17秒前
邯北完成签到,获得积分10
17秒前
Core完成签到,获得积分10
19秒前
zhangjiashu发布了新的文献求助10
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350697
求助须知:如何正确求助?哪些是违规求助? 4484017
关于积分的说明 13957727
捐赠科研通 4383424
什么是DOI,文献DOI怎么找? 2408351
邀请新用户注册赠送积分活动 1400964
关于科研通互助平台的介绍 1374387