Accurate, Dense, and Robust Multi-View Stereopsis

人工智能 计算机科学 计算机视觉 能见度 滤波器(信号处理) 跳跃式监视 集合(抽象数据类型) 初始化 离群值 杂乱 水准点(测量) 立体视觉 一致性(知识库) 平滑的 雷达 地理 光学 程序设计语言 物理 电信 大地测量学
作者
Yasutaka Furukawa,Jean Ponce
出处
期刊:Computer Vision and Pattern Recognition 被引量:325
标识
DOI:10.1109/cvpr.2007.383246
摘要

This paper proposes a novel algorithm for calibrated multi-view stereopsis that outputs a (quasi) dense set of rectangular patches covering the surfaces visible in the input images. This algorithm does not require any initialization in the form of a bounding volume, and it detects and discards automatically outliers and obstacles. It does not perform any smoothing across nearby features, yet is currently the top performer in terms of both coverage and accuracy for four of the six benchmark datasets presented in [20]. The keys to its performance are effective techniques for enforcing local photometric consistency and global visibility constraints. Stereopsis is implemented as a match, expand, and filter procedure, starting from a sparse set of matched keypoints, and repeatedly expanding these to nearby pixel correspondences before using visibility constraints to filter away false matches. A simple but effective method for turning the resulting patch model into a mesh appropriate for image-based modeling is also presented. The proposed approach is demonstrated on various datasets including objects with fine surface details, deep concavities, and thin structures, outdoor scenes observed from a restricted set of viewpoints, and "crowded" scenes where moving obstacles appear in different places in multiple images of a static structure of interest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Luna_aaa应助科研通管家采纳,获得10
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
自觉的火龙果完成签到,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
1秒前
yznfly应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
路人乙发布了新的文献求助10
2秒前
3秒前
4秒前
小萝卜莉完成签到,获得积分10
4秒前
溫蒂完成签到,获得积分10
5秒前
科研通AI6应助认真的rain采纳,获得10
5秒前
aaa完成签到,获得积分10
5秒前
活力柔发布了新的文献求助10
6秒前
BruceLiu发布了新的文献求助10
6秒前
6秒前
tartyang完成签到,获得积分10
8秒前
8秒前
顾矜应助欣喜的素采纳,获得10
8秒前
云泥完成签到 ,获得积分10
8秒前
呆萌沛蓝完成签到,获得积分10
8秒前
9秒前
帅b完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643395
求助须知:如何正确求助?哪些是违规求助? 4761165
关于积分的说明 15020721
捐赠科研通 4801748
什么是DOI,文献DOI怎么找? 2567022
邀请新用户注册赠送积分活动 1524822
关于科研通互助平台的介绍 1484386