稳健性(进化)
理论(学习稳定性)
最优控制
自适应控制
多智能体系统
数据驱动
内部模型
计算机科学
控制(管理)
控制理论(社会学)
国家(计算机科学)
动态规划
数学优化
数学
人工智能
算法
机器学习
生物化学
基因
化学
作者
Weinan Gao,Zhong‐Ping Jiang,Frank L. Lewis,Yebin Wang
出处
期刊:IEEE Transactions on Automatic Control
[Institute of Electrical and Electronics Engineers]
日期:2018-01-30
卷期号:63 (10): 3581-3587
被引量:147
标识
DOI:10.1109/tac.2018.2799526
摘要
This note proposes a novel data-driven solution to the cooperative adaptive optimal control problem of leader-follower multiagent systems under switching network topology. The dynamics of all the followers are unknown, and the leader is modeled by a perturbed exosystem. Through the combination of adaptive dynamic programming and internal model principle, an approximate optimal controller is iteratively learned online using real-time input-state data. Rigorous stability analysis shows that the system in closed-loop with the developed control policy is leader-to-formation stable, with guaranteed robustness to unmeasurable leader disturbance. Numerical results illustrate the effectiveness of the proposed data-driven algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI