杂原子
超级电容器
电容
材料科学
碳纤维
多孔性
电解质
化学工程
比表面积
兴奋剂
电极
纳米技术
化学
有机化学
光电子学
复合材料
复合数
催化作用
戒指(化学)
物理化学
工程类
作者
Fatemeh Razmjooei,Kiranpal Singh,Tong‐Hyun Kang,Nitin K. Chaudhari,Jinliang Yuan,Jong‐Sung Yu
标识
DOI:10.1038/s41598-017-11229-6
摘要
Abstract Obtaining functionalized carbonaceous materials, with well-developed pores and doped heteroatoms, from waste precursors using environmentally friendly processes has always been of great interest. Herein, a simple template-free approach is devised to obtain porous and heteroatom-doped carbon, by using the most abundant human waste, “urine”. Removal of inherent mineral salts from the urine carbon (URC) makes it to possess large quantity of pores. Synergetic effect of the heteroatom doping and surface properties of the URC is exploited by carrying out energy storage application for the first time. Suitable heteroatom content and porous structure can enhance the pseudo-capacitance and electric double layer capacitance, eventually generating superior capacitance from the URC. The optimal carbon electrode obtained particularly at 900 °C (URC-900) possesses high BET surface area (1040.5 m 2 g −1 ), good conductivity, and efficient heteroatom doping of N, S, and P, illustrating high specific capacitance of 166 Fg −1 at 0.5 Ag −1 for three-electrode system in inorganic electrolyte. Moreover, the URC-900 delivers outstanding cycling stability with only 1.7% capacitance decay over 5,000 cycles at 5 Ag −1 . Present work suggests an economical approach based on easily available raw waste material, which can be utilized for large-scale production of new age multi-functional carbon nanomaterials for various energy applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI