Fabrication of BiOI/graphene Hydrogel/FTO photoelectrode with 3D porous architecture for the enhanced photoelectrocatalytic performance

多孔性 石墨烯 材料科学 纳米技术 电化学 电极 电解质 降级(电信) 化学工程 化学 复合材料 计算机科学 电信 工程类 物理化学
作者
Daimei Chen,Jinjin Yang,Yi Zhu,Yuanming Zhang,Yongfa Zhu
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:233: 202-212 被引量:93
标识
DOI:10.1016/j.apcatb.2018.04.004
摘要

Abstract Three-dimensional (3D) porous networkstructural BiOI-graphene hydrogel-FTO (BiOI/GH/FTO) electrode with remarkably superior photoelectrocatalytic degradation activity and photoelectrocatalytic mineralization ability was successfully prepared by a two-step electrodeposition method. The BiOI nanosheets were electrodeposited into the architectures of 3D porous graphene hydrogel which was prepared by the electrochemical reduction of GO in aqueous dispersion. The morphology and amount of BiOI can be controlled by the electrochemical deposition. With the deposition time of BiOI for 60 s and the working voltage at 1.0 V, the photoelectrocatalytic activity of the 3D BiOI/GH/FTO achieved to the maximum. The removal rate of phenol can be up to about 83% in 5 h, which was 13.8 times higher than that of BiOI/FTO electrode. The degradation rate and mineralization rate of phenol in the solution absence of Na2SO4 electrolyte were 76.8% and 56.8%, respectively, which were 13.2 times and 33.4 times as high as that of the BiOI/FTO. The enhanced photoelectrocatalytic degradation activity of 3D BiOI/GH/FTO is due to the 3D porous architecture and a larger surface area of graphene hydrogel which is favorable for reactant diffusion, and the superior electrical conductivity which promotes the charges to transfer excited by BiOI. The BiOI/GH/FTO electrode has the excellent stability. The degradation rates of phenol nearly unchanged after 4 cyclic degradations in static system and a long-term degradation for 72 h in dynamical system. Trapping experiment shows that the hole might be the main active species in photoelectrocatalytic degradation. This research provides new insights in the development of a new photoelectrocatalytic material for the removal of organic compound.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nenoaowu应助大胆芷容采纳,获得10
1秒前
2秒前
一一应助CBWKEYANTONG123采纳,获得100
3秒前
yalixiaoming完成签到,获得积分10
3秒前
幸福发布了新的文献求助10
3秒前
Sue关闭了Sue文献求助
4秒前
十七应助贾哲宇采纳,获得10
4秒前
隐形曼青应助米丸子采纳,获得10
5秒前
木日完成签到,获得积分10
5秒前
张思铭发布了新的文献求助10
6秒前
Orange应助咖啡泡的幻想采纳,获得10
6秒前
lambda完成签到,获得积分10
7秒前
7秒前
zhenzhen完成签到,获得积分10
7秒前
沐沐1003完成签到,获得积分10
7秒前
十七应助gougou采纳,获得10
9秒前
乐乐应助壮观以松采纳,获得10
12秒前
12秒前
KEYAN发布了新的文献求助10
13秒前
发发发发布了新的文献求助10
14秒前
14秒前
加菲丰丰应助daydreamer采纳,获得20
14秒前
X_F发布了新的文献求助10
15秒前
Owen应助研友_892kOL采纳,获得10
15秒前
18秒前
18秒前
Freya完成签到 ,获得积分10
19秒前
19秒前
xpqiu发布了新的文献求助10
20秒前
20秒前
米丸子发布了新的文献求助10
20秒前
小米完成签到,获得积分10
21秒前
21秒前
Sue关闭了Sue文献求助
23秒前
Owen应助Ki采纳,获得10
24秒前
没有蛀牙发布了新的文献求助30
24秒前
joysa发布了新的文献求助10
25秒前
清脆的棒球完成签到 ,获得积分10
27秒前
27秒前
30秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387713
求助须知:如何正确求助?哪些是违规求助? 3000289
关于积分的说明 8790795
捐赠科研通 2686306
什么是DOI,文献DOI怎么找? 1471598
科研通“疑难数据库(出版商)”最低求助积分说明 680398
邀请新用户注册赠送积分活动 673160