We have synthesized a material consisting of conducting metal oxide (MoO3−x) nanoclusters embedded in a high-dielectric-strength insulator (Al2O3) matrix. The resistivity of this material can be customized by varying the concentration of the MoO3−x nanoclusters. The Al2O3 protects the MoO3−x from stoichiometry change, thus conserving the number of carriers and maintaining a high dielectric strength. This composite material is grown by atomic layer deposition, a thin film deposition technique suitable for coating 3D structures. We applied these atomic layer deposition composite films to our 3D electron-optical micro electrical mechanical systems devices and greatly improved their performance.