3D printed microchannel networks to direct vascularisation during endochondral bone repair

软骨内骨化 软骨 生物医学工程 材料科学 膜内骨化 组织工程 骨愈合 破骨细胞 解剖 化学 医学 体外 生物化学
作者
Andrew C. Daly,Pierluca Pitacco,Jessica Nulty,Gráinne M. Cunniffe,Daniel J. Kelly
出处
期刊:Biomaterials [Elsevier]
卷期号:162: 34-46 被引量:189
标识
DOI:10.1016/j.biomaterials.2018.01.057
摘要

Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知足肠乐完成签到,获得积分10
1秒前
梦灵发布了新的文献求助10
1秒前
csa1007发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
mark发布了新的文献求助10
3秒前
搜集达人应助高贵黄蜂采纳,获得10
3秒前
3秒前
XY完成签到,获得积分10
3秒前
3秒前
嘿嘿嘿发布了新的文献求助30
4秒前
花开富贵完成签到,获得积分10
4秒前
4秒前
Ava应助ash采纳,获得10
5秒前
5秒前
mxh695636455完成签到,获得积分10
5秒前
JamesPei应助Ashore采纳,获得30
6秒前
nyzcc完成签到,获得积分10
7秒前
火花完成签到,获得积分10
7秒前
鲁杨发布了新的文献求助10
7秒前
7秒前
Lamis发布了新的文献求助10
8秒前
FashionBoy应助高大zj采纳,获得10
8秒前
道以文完成签到,获得积分10
8秒前
FFF关注了科研通微信公众号
10秒前
呢喃完成签到,获得积分10
11秒前
紧张的梦岚应助稳重飞机采纳,获得20
13秒前
科研通AI5应助潇潇微雨采纳,获得10
13秒前
科研通AI5应助潇潇微雨采纳,获得10
13秒前
搜集达人应助项阑悦采纳,获得30
13秒前
科研通AI5应助潇潇微雨采纳,获得10
13秒前
不安青牛应助潇潇微雨采纳,获得10
13秒前
丘比特应助潇潇微雨采纳,获得10
13秒前
PENG应助潇潇微雨采纳,获得10
13秒前
不安青牛应助潇潇微雨采纳,获得10
13秒前
不安青牛应助潇潇微雨采纳,获得10
13秒前
SYLH应助潇潇微雨采纳,获得10
14秒前
SYLH应助潇潇微雨采纳,获得10
14秒前
14秒前
方方完成签到,获得积分10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514849
求助须知:如何正确求助?哪些是违规求助? 3097216
关于积分的说明 9234514
捐赠科研通 2792168
什么是DOI,文献DOI怎么找? 1532293
邀请新用户注册赠送积分活动 711963
科研通“疑难数据库(出版商)”最低求助积分说明 707062