纳米材料基催化剂
纳米化学
空位缺陷
纳米技术
纳米材料
材料科学
贵金属
催化作用
分解水
光催化
纳米颗粒
金属
化学
冶金
结晶学
生物化学
作者
Min‐Quan Yang,Jing Wang,Hao Wu,Ghim Wei Ho
出处
期刊:Small
[Wiley]
日期:2018-01-22
卷期号:14 (15)
被引量:316
标识
DOI:10.1002/smll.201703323
摘要
Abstract The fast development of nanoscience and nanotechnology has significantly advanced the fabrication of nanocatalysts and the in‐depth study of the structural‐activity characteristics of materials at the atomic level. Vacancies, as typical atomic defects or imperfections that widely exist in solid materials, are demonstrated to effectively modulate the physicochemical, electronic, and catalytic properties of nanomaterials, which is a key concept and hot research topic in nanochemistry and nanocatalysis. The recent experimental and theoretical progresses achieved in the preparation and application of vacancy‐rich nanocatalysts for electrochemical water splitting are explored. Engineering of vacancies has shown to open up a new avenue beyond the traditional morphology, size, and composition modifications for the development of nonprecious electrocatalysts toward efficient energy conversion. First, an introduction followed by discussions of different types of vacancies, the approaches to create vacancies, and the advanced techniques widely used to characterize these vacancies are presented. Importantly, the correlations between the vacancies and activities of the vacancy‐rich electrocatalysts via tuning the electronic states, active sites, and kinetic energy barriers are reviewed. Finally, perspectives on the existing challenges along with some opportunities for the further development of vacancy‐rich noble metal‐free electrocatalysts with high performance are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI