Gate Control Optimization of Si/SiC Hybrid Switch for Junction Temperature Balance and Power Loss Reduction

绝缘栅双极晶体管 材料科学 转换器 MOSFET 结温 门驱动器 功率(物理) 电气工程 功率半导体器件 电压 控制理论(社会学) 电子工程 计算机科学 功率MOSFET 工程类 控制(管理) 晶体管 物理 量子力学 人工智能
作者
Jun Wang,Zongjian Li,Xi Jiang,Cheng Zeng,Z. John Shen
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 1744-1754 被引量:71
标识
DOI:10.1109/tpel.2018.2829624
摘要

The hybrid switch concept of paralleling a higher-current main Si IGBT and a lower-current auxiliary SiC mosfet offers an improved cost/performance tradeoff in power converters. Currently, the gate control strategy of these two internal devices emphasizes on minimizing the total power loss, and is referred to as the efficiency control mode in this paper. However, there is a serious risk of overheating and reliability degradation of the SiC mosfet if solely relying on this control strategy. In this paper, we propose a new method of gate control optimization, referred to as the thermal balance control mode, to keep the junction temperature of both devices within the specified temperature range, and to minimize the total power loss simultaneously. We first investigate the dependency of the hybrid switch switching losses on the gate control pattern both theoretically and experimentally. We then extensively study control optimization in these two distinct control modes in a dc-dc boost converter. It is found that the thermal balance control mode can achieve almost the same total power loss as the efficiency control mode, but much lower and more balanced junction temperatures of the two internal devices. Experimental results demonstrate that the Si/SiC hybrid switch in an optimal thermal balance control mode can achieve a 163% higher power handling capability in the 20-kHz boost converter or four times higher switching frequency in the 4-kW boost converter than a single IGBT solution with hard switching condition, and yet a considerably lower component cost than a single SiC mosfet solution in the boost converter.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助PDD采纳,获得10
刚刚
老实的黑米完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
Akim应助小阿发采纳,获得10
3秒前
姜糖完成签到,获得积分10
4秒前
wanci应助心灵美从寒采纳,获得10
5秒前
5秒前
科研通AI6应助mxr采纳,获得200
5秒前
Vintoe完成签到 ,获得积分10
5秒前
5秒前
自然剑发布了新的文献求助10
6秒前
岳元满关注了科研通微信公众号
6秒前
wing发布了新的文献求助30
6秒前
科研通AI6应助TG采纳,获得10
7秒前
7秒前
露桥闻笛发布了新的文献求助10
8秒前
科小白完成签到 ,获得积分0
8秒前
爱学习的小张完成签到,获得积分10
8秒前
科研通AI6应助JL采纳,获得10
8秒前
kiki完成签到,获得积分10
8秒前
bk发布了新的文献求助10
8秒前
姜糖发布了新的文献求助30
8秒前
xiaotian发布了新的文献求助10
9秒前
11秒前
科目三应助小邸采纳,获得30
12秒前
王梦雨发布了新的文献求助10
13秒前
慕青应助你怎么睡得着觉采纳,获得10
13秒前
kiki发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
Owen应助Pang_Rongye采纳,获得10
15秒前
Hi发布了新的文献求助20
15秒前
16秒前
18秒前
green发布了新的文献求助10
18秒前
贝利亚发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642264
求助须知:如何正确求助?哪些是违规求助? 4758561
关于积分的说明 15017114
捐赠科研通 4800890
什么是DOI,文献DOI怎么找? 2566214
邀请新用户注册赠送积分活动 1524333
关于科研通互助平台的介绍 1483913