Gate Control Optimization of Si/SiC Hybrid Switch for Junction Temperature Balance and Power Loss Reduction

绝缘栅双极晶体管 材料科学 转换器 MOSFET 结温 门驱动器 功率(物理) 电气工程 功率半导体器件 电压 控制理论(社会学) 电子工程 计算机科学 功率MOSFET 工程类 控制(管理) 晶体管 物理 量子力学 人工智能
作者
Jun Wang,Zongjian Li,Xi Jiang,Cheng Zeng,Z. John Shen
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 1744-1754 被引量:71
标识
DOI:10.1109/tpel.2018.2829624
摘要

The hybrid switch concept of paralleling a higher-current main Si IGBT and a lower-current auxiliary SiC mosfet offers an improved cost/performance tradeoff in power converters. Currently, the gate control strategy of these two internal devices emphasizes on minimizing the total power loss, and is referred to as the efficiency control mode in this paper. However, there is a serious risk of overheating and reliability degradation of the SiC mosfet if solely relying on this control strategy. In this paper, we propose a new method of gate control optimization, referred to as the thermal balance control mode, to keep the junction temperature of both devices within the specified temperature range, and to minimize the total power loss simultaneously. We first investigate the dependency of the hybrid switch switching losses on the gate control pattern both theoretically and experimentally. We then extensively study control optimization in these two distinct control modes in a dc-dc boost converter. It is found that the thermal balance control mode can achieve almost the same total power loss as the efficiency control mode, but much lower and more balanced junction temperatures of the two internal devices. Experimental results demonstrate that the Si/SiC hybrid switch in an optimal thermal balance control mode can achieve a 163% higher power handling capability in the 20-kHz boost converter or four times higher switching frequency in the 4-kW boost converter than a single IGBT solution with hard switching condition, and yet a considerably lower component cost than a single SiC mosfet solution in the boost converter.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋虹完成签到,获得积分10
1秒前
2秒前
QYZ完成签到 ,获得积分10
2秒前
zpc发布了新的文献求助10
4秒前
4秒前
怜然完成签到 ,获得积分10
4秒前
走走完成签到,获得积分10
5秒前
人生若只如初见给人生若只如初见的求助进行了留言
6秒前
终归完成签到 ,获得积分10
6秒前
梁敏完成签到,获得积分10
7秒前
Nnn完成签到,获得积分10
7秒前
我要毕业发布了新的文献求助10
7秒前
lrrrrrr完成签到,获得积分10
7秒前
bbanshan完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
Shengkun完成签到,获得积分10
9秒前
lyncee给lyncee的求助进行了留言
10秒前
鳗鱼梦寒发布了新的文献求助10
10秒前
YLi_746完成签到,获得积分10
12秒前
蜜雪冰城完成签到,获得积分10
13秒前
14秒前
最爱吃火锅完成签到,获得积分10
14秒前
Owen应助倾听采纳,获得10
14秒前
小张呢好完成签到,获得积分10
14秒前
14秒前
yz完成签到,获得积分10
16秒前
Criminology34应助liu采纳,获得10
18秒前
听荷77777完成签到,获得积分10
19秒前
chenxilulu完成签到,获得积分10
19秒前
lllllsy完成签到,获得积分10
19秒前
19秒前
斯文雪青完成签到,获得积分10
19秒前
CodeCraft应助派大星采纳,获得10
20秒前
缥莲发布了新的文献求助10
20秒前
hyw完成签到,获得积分10
21秒前
bksqc完成签到 ,获得积分10
21秒前
xxt完成签到,获得积分10
21秒前
磊少完成签到,获得积分10
22秒前
心灵美的白卉完成签到,获得积分10
23秒前
WXR完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603632
求助须知:如何正确求助?哪些是违规求助? 4688639
关于积分的说明 14855202
捐赠科研通 4694366
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806