Computational models of epileptic activity: a bridge between observation and pathophysiological interpretation

神经科学 癫痫 背景(考古学) 计算模型 药物发现 心理学 计算神经科学 神经递质受体 计算机科学 医学 生物 生物信息学 人工智能 受体 古生物学 内科学
作者
Fabrice Wendling
出处
期刊:Expert Review of Neurotherapeutics [Informa]
卷期号:8 (6): 889-896 被引量:65
标识
DOI:10.1586/14737175.8.6.889
摘要

Epilepsy is a neurological disorder characterized by the recurrence of seizures. It affects 50 million people worldwide. Although a considerable number of new antiepileptic drugs with reduced side effects and toxicity have been introduced since the 1950s, 30% of patients remain pharmacoresistant. Although epilepsy research is making progress, advances in understanding drug resistance have been hampered by the complexity of the underlying neuronal systems responsible for epileptic activity. In such systems where short- or long-term plasticity plays a role, pathophysiological alterations may take place at subcellular (i.e., membrane ion channels and neurotransmitter receptors), cellular (neurons), tissular (networks of neurons) and regional (networks of networks of neurons) scales. In such a context, the demand for integrative approaches is high and neurocomputational models become recognized tools for tackling the complexity of epileptic phenomena. The purpose of this report is to provide an overview on computational modeling as a way of structuring and interpreting multimodal data recorded from the epileptic brain. Some examples are briefly described, which illustrate how computational models closely related with either experimental or clinical data can markedly advance our understanding of essential issues in epilepsy such as the transition from background to seizure activity. A commentary is also made on the potential use of such models in the study of therapeutic strategies such as rational drug design or electrical stimulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助Yuki0616采纳,获得10
刚刚
小马甲应助鸣隐采纳,获得10
刚刚
ycd完成签到,获得积分10
1秒前
ark861023完成签到,获得积分10
1秒前
淡定问芙完成签到,获得积分10
1秒前
斯文败类应助惠惠采纳,获得10
2秒前
2秒前
Meowly完成签到,获得积分10
2秒前
3秒前
3秒前
陶醉觅夏发布了新的文献求助10
3秒前
pu完成签到,获得积分10
3秒前
小灵通完成签到,获得积分10
3秒前
给我找发布了新的文献求助10
3秒前
科研通AI2S应助LIn采纳,获得10
4秒前
gaga完成签到,获得积分10
4秒前
_Charmo完成签到,获得积分10
4秒前
Slemon完成签到,获得积分10
4秒前
谦谦姜完成签到,获得积分10
6秒前
7秒前
JINGZHANG发布了新的文献求助10
7秒前
7秒前
归海天与应助糊弄学专家采纳,获得10
7秒前
风中的青完成签到,获得积分10
8秒前
8秒前
8秒前
duxinyue关注了科研通微信公众号
9秒前
超级宇宙二踢脚关注了科研通微信公众号
9秒前
10秒前
10秒前
11秒前
务实盼海发布了新的文献求助10
11秒前
徐徐徐徐发布了新的文献求助10
12秒前
星晴遇见花海完成签到,获得积分10
12秒前
乐乐应助Rrr采纳,获得10
13秒前
难过鸿涛应助srt采纳,获得10
14秒前
15秒前
卡卡发布了新的文献求助10
15秒前
15秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794