Computational models of epileptic activity: a bridge between observation and pathophysiological interpretation

神经科学 癫痫 背景(考古学) 计算模型 药物发现 心理学 计算神经科学 神经递质受体 计算机科学 医学 生物 生物信息学 人工智能 受体 古生物学 内科学
作者
Fabrice Wendling
出处
期刊:Expert Review of Neurotherapeutics [Informa]
卷期号:8 (6): 889-896 被引量:65
标识
DOI:10.1586/14737175.8.6.889
摘要

Epilepsy is a neurological disorder characterized by the recurrence of seizures. It affects 50 million people worldwide. Although a considerable number of new antiepileptic drugs with reduced side effects and toxicity have been introduced since the 1950s, 30% of patients remain pharmacoresistant. Although epilepsy research is making progress, advances in understanding drug resistance have been hampered by the complexity of the underlying neuronal systems responsible for epileptic activity. In such systems where short- or long-term plasticity plays a role, pathophysiological alterations may take place at subcellular (i.e., membrane ion channels and neurotransmitter receptors), cellular (neurons), tissular (networks of neurons) and regional (networks of networks of neurons) scales. In such a context, the demand for integrative approaches is high and neurocomputational models become recognized tools for tackling the complexity of epileptic phenomena. The purpose of this report is to provide an overview on computational modeling as a way of structuring and interpreting multimodal data recorded from the epileptic brain. Some examples are briefly described, which illustrate how computational models closely related with either experimental or clinical data can markedly advance our understanding of essential issues in epilepsy such as the transition from background to seizure activity. A commentary is also made on the potential use of such models in the study of therapeutic strategies such as rational drug design or electrical stimulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的微笑应助csu小明采纳,获得10
1秒前
bkagyin应助傻傻的从蕾采纳,获得10
1秒前
2秒前
2秒前
DDJ发布了新的文献求助30
2秒前
2秒前
wangjing11完成签到,获得积分10
3秒前
在水一方应助xieyuanxing采纳,获得10
3秒前
Orange应助孤独音响采纳,获得10
4秒前
handsomecat完成签到,获得积分10
4秒前
贝贝发布了新的文献求助10
4秒前
公孙世往发布了新的文献求助50
5秒前
5秒前
白依发布了新的文献求助10
5秒前
常常发布了新的文献求助10
5秒前
6秒前
6秒前
彩虹天堂完成签到,获得积分10
6秒前
mono发布了新的文献求助10
7秒前
思源应助赛特新思采纳,获得10
7秒前
王彭完成签到,获得积分10
7秒前
8秒前
8秒前
婷婷发布了新的文献求助10
8秒前
echo发布了新的文献求助30
8秒前
深情安青应助犹豫的君浩采纳,获得10
9秒前
求助人员应助王钰绮采纳,获得10
9秒前
win关注了科研通微信公众号
10秒前
kd7发布了新的文献求助10
10秒前
如意的冰双完成签到 ,获得积分10
11秒前
11秒前
11秒前
思源应助小杜采纳,获得10
11秒前
wulanshu发布了新的文献求助10
11秒前
绅筠玺完成签到 ,获得积分10
12秒前
12秒前
JHB关闭了JHB文献求助
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905