数学
李雅普诺夫函数
李雅普诺夫方程
应用数学
订单(交换)
李雅普诺夫指数
理论(学习稳定性)
二次方程
Lyapunov稳定性
基质(化学分析)
分数阶微积分
跟踪(心理语言学)
Lyapunov重新设计
转置
计算机科学
控制(管理)
非线性系统
经济
混乱的
材料科学
几何学
复合材料
特征向量
人工智能
哲学
物理
机器学习
量子力学
语言学
财务
作者
Manuel A. Duarte‐Mermoud,Norelys Aguila‐Camacho,Javier A. Gallegos,R. Castro‐Linares
标识
DOI:10.1016/j.cnsns.2014.10.008
摘要
This paper presents two new lemmas related to the Caputo fractional derivatives, when α∈0,1, for the case of general quadratic forms and for the case where the trace of the product of a rectangular matrix and its transpose appear. Those two lemmas allow using general quadratic Lyapunov functions and the trace of a matrix inside a Lyapunov function respectively, in order to apply the fractional-order extension of Lyapunov direct method, to analyze the stability of fractional order systems (FOS). Besides, the paper presents a theorem for proving uniform stability in the sense of Lyapunov for fractional order systems. The theorem can be seen as a complement of other methods already available in the literature. The two lemmas and the theorem are applied to the stability analysis of two Fractional Order Model Reference Adaptive Control (FOMRAC) schemes, in order to prove the usefulness of the results.
科研通智能强力驱动
Strongly Powered by AbleSci AI