Empirical Improvements for Estimating Earthquake Response Spectra with Random-Vibration Theory

随机振动 振动 地震学 地质学 谱线 结构工程 声学 物理 工程类 量子力学
作者
David M. Boore,Eric M. Thompson
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:102 (2): 761-772 被引量:37
标识
DOI:10.1785/0120110244
摘要

The stochastic method of ground-motion simulation is often used in combination with the random-vibration theory to directly compute ground-motion in- tensity measures, thereby bypassing the more computationally intensive time-domain simulations. Key to the application of random-vibration theory to simulate response spectra is determining the duration (Drms) used in computing the root-mean-square oscillator response. Boore and Joyner (1984) originally proposed an equation for Drms, which was improved upon by Liu and Pezeshk (1999). Though these equations are both substantial improvements over using the duration of the ground-motion ex- citation for Drms, we document systematic differences between the ground-motion intensity measures derived from the random-vibration and time-domain methods for both of these Drms equations. These differences are generally less than 10% for most magnitudes, distances, and periods of engineering interest. Given the systematic nature of the differences, however, we feel that improved equations are warranted. We empirically derive new equations from time-domain simulations for eastern and western North America seismological models. The new equations improve the random-vibration simulations over a wide range of magnitudes, distances, and oscil- lator periods. Online Material: SMSIM parameter files, tables of coefficients and model parameters, and shaded contour plots of TD/RV ratios for two WNA models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lin发布了新的文献求助10
1秒前
tmpstlml完成签到,获得积分10
1秒前
LUNWENREQUEST完成签到,获得积分20
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
RC_Wang应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得30
2秒前
111发布了新的文献求助10
3秒前
keyanlv完成签到,获得积分10
3秒前
富贵儿发布了新的文献求助10
5秒前
冯度翩翩完成签到,获得积分10
5秒前
sweetbearm应助健壮的涑采纳,获得10
5秒前
村里傻小子完成签到,获得积分20
5秒前
田様应助Khr1stINK采纳,获得10
6秒前
傲娇的凡旋应助小周采纳,获得10
7秒前
潇潇潇完成签到 ,获得积分10
7秒前
8秒前
英俊的铭应助XShu采纳,获得10
9秒前
Hello应助一只大肥猫采纳,获得10
10秒前
allyceacheng完成签到,获得积分10
10秒前
科研通AI5应助phd采纳,获得10
11秒前
11秒前
WTaMi完成签到 ,获得积分10
11秒前
zoe发布了新的文献求助10
11秒前
Owen应助无奈的酒窝采纳,获得10
12秒前
13秒前
15秒前
15秒前
15秒前
科研通AI5应助wangyanwxy采纳,获得10
16秒前
36456657应助豆dou采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808