Considering the impact drug-like properties have on the chance of success

药品 集合(抽象数据类型) 相似性(几何) 计算机科学 风险分析(工程) 贝叶斯概率 医学 药理学 计算生物学 人工智能 生物 图像(数学) 程序设计语言
作者
Iskander Yusof,Matthew Segall
出处
期刊:Drug Discovery Today [Elsevier]
卷期号:18 (13-14): 659-666 被引量:115
标识
DOI:10.1016/j.drudis.2013.02.008
摘要

Many definitions of 'drug-like' compound properties have been published; based on the analysis of simple molecular properties of successful drugs. These are typically presented as rules that define acceptable boundaries for these properties. When a compound does not 'fit' within these boundaries then its properties differ from those of the majority of drugs, which could indicate a higher risk of poor pharmacokinetics or safety outcomes in vivo. Here, we review the strengths and weaknesses of these rules and note, in particular, that the overly rigid application of strict cut-off points can introduce artificial distinctions between similar compounds, running the risk of missing valuable opportunities. Alternatively, compounds can be ranked according to their similarity to marketed drugs using a continuous measure of drug-likeness. However, being similar to known drugs does not necessarily mean that a compound is more likely to become a drug and we demonstrate how a new approach, employing Bayesian methods, can be used to compare a set of successful drugs with a set of non-drug compounds to identify those properties that give the greatest distinction between the two sets, and hence the greatest increase in the likelihood of a compound becoming a successful drug. This analysis further illustrates that guidelines for drug-likeness might not be generally applicable across all compound and target classes or therapeutic indications. Therefore, it might be more appropriate to consider specific guidelines for drug-likeness that are project specific.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJT发布了新的文献求助10
1秒前
LC应助WSM采纳,获得50
2秒前
英俊的铭应助杨李慧采纳,获得10
2秒前
2秒前
3秒前
NiMing完成签到,获得积分10
4秒前
脑洞疼应助Lalali采纳,获得10
5秒前
5秒前
CodeCraft应助爱撒娇的无施采纳,获得10
5秒前
梁嘉琦完成签到,获得积分10
6秒前
DoIt发布了新的文献求助10
6秒前
如意白猫完成签到,获得积分10
8秒前
8秒前
12秒前
12秒前
13秒前
14秒前
14秒前
14秒前
寒冷的亦凝完成签到,获得积分10
15秒前
搜集达人应助研猫采纳,获得10
15秒前
zoyo发布了新的文献求助10
15秒前
大模型应助阳光的静白采纳,获得10
16秒前
Lalali发布了新的文献求助10
17秒前
17秒前
奋斗绮完成签到,获得积分20
18秒前
义气的如松完成签到,获得积分10
18秒前
18秒前
19秒前
小白鼠发布了新的文献求助10
19秒前
要减肥朋友完成签到,获得积分10
21秒前
单纯的小土豆完成签到,获得积分10
21秒前
22秒前
xx发布了新的文献求助10
23秒前
杜宇完成签到 ,获得积分10
23秒前
奋斗绮发布了新的文献求助30
24秒前
25秒前
25秒前
慕青应助鳗鱼飞船采纳,获得10
25秒前
杨李慧发布了新的文献求助10
26秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128973
求助须知:如何正确求助?哪些是违规求助? 2779757
关于积分的说明 7744663
捐赠科研通 2434935
什么是DOI,文献DOI怎么找? 1293790
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530