Relationship between sources and patterns of VOCs in indoor air

环境科学 室内空气质量 主成分分析 空气质量指数 分摊 污染物 通风(建筑) 非负矩阵分解 空气污染 污染 环境工程 气象学 统计 地理 矩阵分解 数学 化学 生态学 物理 法学 有机化学 特征向量 生物 量子力学 政治学
作者
Carolin Rösch,Tibor Kohajda,Stefan Röder,Martin von Bergen�,Uwe Schlink
出处
期刊:Atmospheric Pollution Research [Elsevier]
卷期号:5 (1): 129-137 被引量:87
标识
DOI:10.5094/apr.2014.016
摘要

People spend most of their daytime in indoor environments. Their activities influence the composition of the indoor air by emitting volatile organic compounds (VOCs). The increasing number of different VOCs became the focus of attention in recent years as the question arises from the relationship between exposure to air pollutants and diseases. The present study of flats in Leipzig (Germany) is based on measurements of 60 different VOCs and is unique in the field of indoor air quality due to its enormous size of samples (n = 2 242) and questionnaire data. The main purpose of our analysis was to identify the sources and patterns that characterize airborne VOCs in occupied flats. We combined two methods, principal components analysis (PCA) and non–negative matrix factorization (NMF), to assign compounds to their origin and to understand the coinstantaneous existence of several VOCs. PCA clustering provided a source apportionment and yielded 10 principal components (PCs) with an explained variance of 72%. However, real indoor air quality is often affected by combined sources. NMF reveals characteristic compositions of VOCs in indoor environments and emphasizes that constantly recurring structures are not single sources, but rather fusions of them, so called patterns. Interpreting these sources, we realized that homes were strongly influenced by ventilation, human activities, furnishings, natural processes (such as solar radiation) or their combinations. The very large set of samples and the combination with questionnaires applied on this comprehensive assessment of VOCs allows generalizing the results to homes in middle–scale cities with minor industrial pollution. As a conclusion, single VOC–dose–response relationships are inopportune for situations when indoor sources occur in combination. Further studies are necessary to assess associated health risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助小王采纳,获得10
刚刚
刚刚
张豪杰发布了新的文献求助10
刚刚
开心初雪完成签到,获得积分10
1秒前
冷静的之卉完成签到,获得积分10
1秒前
1秒前
顾矜应助外向从灵采纳,获得10
2秒前
一只生物狗完成签到,获得积分10
2秒前
Hello应助echolan采纳,获得10
3秒前
3秒前
安静的雨发布了新的文献求助10
3秒前
3秒前
天天快乐应助苹果酸奶采纳,获得10
3秒前
YANG901完成签到,获得积分10
4秒前
酷波er应助yanyanyanyan采纳,获得10
4秒前
5秒前
doudou发布了新的文献求助10
5秒前
慕青应助Zhang采纳,获得10
5秒前
popo6150完成签到,获得积分10
5秒前
能力越小责任越小完成签到,获得积分10
5秒前
cripple完成签到,获得积分10
6秒前
碧蓝的曼岚完成签到,获得积分10
6秒前
6秒前
buno应助古怪小枫采纳,获得10
6秒前
6秒前
躺平才有生活完成签到,获得积分10
7秒前
7秒前
顶刊我来了完成签到,获得积分10
7秒前
搜集达人应助果汁采纳,获得10
8秒前
8秒前
Hover发布了新的文献求助10
8秒前
传奇3应助mirror采纳,获得30
8秒前
yaqin@9909发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
星辰完成签到,获得积分10
10秒前
NK001完成签到,获得积分10
10秒前
缘起缘灭完成签到,获得积分10
11秒前
CipherSage应助萌道采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759