Considering Spatial Correlation in Mixed-Effects Regression and the Impact on Ground-Motion Models

地震动 相关性 回归 空间相关性 回归分析 混合模型 统计 数学 环境科学 地质学 地震学 几何学
作者
Nirmal Jayaram,Jack W. Baker
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
卷期号:100 (6): 3295-3303 被引量:54
标识
DOI:10.1785/0120090366
摘要

Abstract Ground-motion models are commonly used in earthquake engineering to predict the probability distribution of the ground-motion intensity at a given site due to a particular earthquake event. These models are often built using regression on observed ground-motion intensities and are fitted using either the one-stage mixed-effects regression algorithm proposed by Abrahamson and Youngs (1992) or the two-stage algorithm of Joyner and Boore (1993). In their current forms, these algorithms ignore the spatial correlation between intraevent residuals. This paper emphasizes the theoretical importance of considering spatial correlation while fitting ground-motion models and proposes an extension to the Abrahamson and Youngs (1992) algorithm that allows the consideration of spatial correlation. By refitting the Campbell and Bozorgnia (2008) ground-motion model using the mixed-effects regression algorithm considering spatial correlation, it is apparent that the variance of the total residuals and the ground-motion model coefficients used for predicting the median ground-motion intensity are not significantly different from the published values even after the incorporation of spatial correlation. However, there is an increase in the variance of the intraevent residual and a significant decrease in the variance of the interevent residual. These changes have implications for risk assessments of spatially-distributed systems because a smaller interevent residual variance implies lesser likelihood of observing large ground-motion intensities at all sites in a region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宫冷雁发布了新的文献求助10
1秒前
lsn完成签到,获得积分10
2秒前
卡卡西应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
穆仰应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
卡卡西应助科研通管家采纳,获得20
3秒前
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
人生如梦应助科研通管家采纳,获得10
3秒前
3秒前
王子安应助科研通管家采纳,获得10
3秒前
核桃应助龙辉采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
卡卡西应助科研通管家采纳,获得10
4秒前
May应助科研通管家采纳,获得20
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
zys2001mezy应助科研通管家采纳,获得150
4秒前
whatever应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
小仙女212发布了新的文献求助10
5秒前
Rondab应助科研小郭采纳,获得10
6秒前
7秒前
lsn发布了新的文献求助10
7秒前
lilongcheng完成签到,获得积分10
7秒前
orixero应助Shu采纳,获得30
7秒前
梦之哆啦完成签到,获得积分10
8秒前
坚定如南完成签到 ,获得积分10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958850
求助须知:如何正确求助?哪些是违规求助? 3505102
关于积分的说明 11122496
捐赠科研通 3236558
什么是DOI,文献DOI怎么找? 1788899
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802794