Hyperspectral Image Classification Using Dictionary-Based Sparse Representation

高光谱成像 模式识别(心理学) 像素 人工智能 稀疏逼近 平滑的 计算机科学 支持向量机 上下文图像分类 数学 图像(数学) 计算机视觉
作者
Yi Chen,Nasser M. Nasrabadi,Trac D. Tran
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:49 (10): 3973-3985 被引量:1105
标识
DOI:10.1109/tgrs.2011.2129595
摘要

A new sparsity-based algorithm for the classification of hyperspectral imagery is proposed in this paper. The proposed algorithm relies on the observation that a hyperspectral pixel can be sparsely represented by a linear combination of a few training samples from a structured dictionary. The sparse representation of an unknown pixel is expressed as a sparse vector whose nonzero entries correspond to the weights of the selected training samples. The sparse vector is recovered by solving a sparsity-constrained optimization problem, and it can directly determine the class label of the test sample. Two different approaches are proposed to incorporate the contextual information into the sparse recovery optimization problem in order to improve the classification performance. In the first approach, an explicit smoothing constraint is imposed on the problem formulation by forcing the vector Laplacian of the reconstructed image to become zero. In this approach, the reconstructed pixel of interest has similar spectral characteristics to its four nearest neighbors. The second approach is via a joint sparsity model where hyperspectral pixels in a small neighborhood around the test pixel are simultaneously represented by linear combinations of a few common training samples, which are weighted with a different set of coefficients for each pixel. The proposed sparsity-based algorithm is applied to several real hyperspectral images for classification. Experimental results show that our algorithm outperforms the classical supervised classifier support vector machines in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助melodyezi采纳,获得10
刚刚
蓝色条纹衫完成签到 ,获得积分10
刚刚
1秒前
1秒前
kingwhitewing发布了新的文献求助10
1秒前
灵巧汉堡完成签到 ,获得积分10
2秒前
SciGPT应助幸福胡萝卜采纳,获得10
3秒前
积极晓兰完成签到,获得积分10
3秒前
3秒前
离子电池完成签到,获得积分10
3秒前
小熊饼干完成签到,获得积分10
3秒前
Ryuichi完成签到 ,获得积分10
4秒前
冷静的平安完成签到,获得积分20
4秒前
周士乐完成签到,获得积分10
4秒前
juan完成签到,获得积分10
5秒前
cheeselemon182完成签到,获得积分10
5秒前
英勇凝旋完成签到,获得积分10
6秒前
HopeStar发布了新的文献求助10
6秒前
6秒前
石幻枫完成签到 ,获得积分10
7秒前
生动盼秋发布了新的文献求助10
7秒前
韭黄发布了新的文献求助10
7秒前
Eliauk完成签到,获得积分10
8秒前
小野狼完成签到,获得积分10
8秒前
威武诺言完成签到,获得积分10
8秒前
fengye发布了新的文献求助10
8秒前
李东东完成签到 ,获得积分10
8秒前
Zn应助hulin_zjxu采纳,获得10
8秒前
海鸥海鸥发布了新的文献求助50
9秒前
小乔要努力变强完成签到,获得积分10
9秒前
YANG完成签到 ,获得积分10
9秒前
9秒前
在水一方应助马保国123采纳,获得10
9秒前
Jovid完成签到,获得积分10
10秒前
建成完成签到,获得积分10
10秒前
爆米花应助落落采纳,获得10
10秒前
852应助liu123479采纳,获得20
11秒前
11秒前
无情念之发布了新的文献求助10
11秒前
lilac应助Rocky采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759