已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hyperspectral Image Classification Using Dictionary-Based Sparse Representation

高光谱成像 模式识别(心理学) 像素 人工智能 稀疏逼近 平滑的 计算机科学 支持向量机 上下文图像分类 数学 图像(数学) 计算机视觉
作者
Yi Chen,Nasser M. Nasrabadi,Trac D. Tran
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:49 (10): 3973-3985 被引量:1105
标识
DOI:10.1109/tgrs.2011.2129595
摘要

A new sparsity-based algorithm for the classification of hyperspectral imagery is proposed in this paper. The proposed algorithm relies on the observation that a hyperspectral pixel can be sparsely represented by a linear combination of a few training samples from a structured dictionary. The sparse representation of an unknown pixel is expressed as a sparse vector whose nonzero entries correspond to the weights of the selected training samples. The sparse vector is recovered by solving a sparsity-constrained optimization problem, and it can directly determine the class label of the test sample. Two different approaches are proposed to incorporate the contextual information into the sparse recovery optimization problem in order to improve the classification performance. In the first approach, an explicit smoothing constraint is imposed on the problem formulation by forcing the vector Laplacian of the reconstructed image to become zero. In this approach, the reconstructed pixel of interest has similar spectral characteristics to its four nearest neighbors. The second approach is via a joint sparsity model where hyperspectral pixels in a small neighborhood around the test pixel are simultaneously represented by linear combinations of a few common training samples, which are weighted with a different set of coefficients for each pixel. The proposed sparsity-based algorithm is applied to several real hyperspectral images for classification. Experimental results show that our algorithm outperforms the classical supervised classifier support vector machines in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助十七采纳,获得10
1秒前
素昧平生发布了新的文献求助50
2秒前
徒然草发布了新的文献求助10
2秒前
敬业乐群完成签到,获得积分10
3秒前
执梳发布了新的文献求助10
4秒前
7秒前
12秒前
dzh发布了新的文献求助10
21秒前
大华完成签到,获得积分10
22秒前
榴莲姑娘完成签到 ,获得积分10
23秒前
执梳完成签到,获得积分10
23秒前
NexusExplorer应助饱满的映天采纳,获得10
23秒前
明钟达完成签到,获得积分10
28秒前
传奇3应助科研通管家采纳,获得10
29秒前
qwwhu应助科研通管家采纳,获得10
29秒前
29秒前
华仔应助科研通管家采纳,获得10
29秒前
Lucas应助科研通管家采纳,获得10
29秒前
Angenstern完成签到 ,获得积分10
31秒前
37秒前
38秒前
Maryamgvl完成签到 ,获得积分10
39秒前
Criminology34应助qyn1234566采纳,获得80
41秒前
科研通AI6应助liaofang采纳,获得10
42秒前
42秒前
43秒前
AM发布了新的文献求助10
43秒前
44秒前
44秒前
zbol发布了新的文献求助10
44秒前
平淡钧发布了新的文献求助10
47秒前
孙东玥发布了新的文献求助10
47秒前
48秒前
小蘑菇应助maomao201026采纳,获得10
48秒前
兴奋雁蓉完成签到,获得积分10
49秒前
淮安石河子完成签到 ,获得积分10
50秒前
艳阳天完成签到 ,获得积分10
52秒前
鬼笔环肽完成签到 ,获得积分10
52秒前
55秒前
SciGPT应助无私的梦凡采纳,获得10
55秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197833
求助须知:如何正确求助?哪些是违规求助? 4379025
关于积分的说明 13637476
捐赠科研通 4234845
什么是DOI,文献DOI怎么找? 2323025
邀请新用户注册赠送积分活动 1321090
关于科研通互助平台的介绍 1271903