亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exhaled volatile organic compounds identify patients with colorectal cancer

医学 结直肠癌 接收机工作特性 癌症 内科学 气体分析呼吸 生物标志物 线性判别分析 呼吸试验 结肠镜检查 人口 胃肠病学 人工智能 化学 解剖 环境卫生 幽门螺杆菌 生物化学 计算机科学
作者
Donato F. Altomare,M. Di Lena,Francesca Porcelli,L. Trizio,E Travaglio,Maria Tutino,Silvano Dragonieri,V. Memeo,Gianluigi de Gennaro
出处
期刊:British Journal of Surgery 卷期号:100 (1): 144-150 被引量:260
标识
DOI:10.1002/bjs.8942
摘要

Abstract Background An effective screening tool for colorectal cancer is still lacking. Analysis of the volatile organic compounds (VOCs) linked to cancer is a new frontier in cancer screening, as tumour growth involves several metabolic changes leading to the production of specific compounds that can be detected in exhaled breath. This study investigated whether patients with colorectal cancer have a specific VOC pattern compared with the healthy population. Methods Exhaled breath was collected in an inert bag (Tedlar®) from patients with colorectal cancer and healthy controls (negative at colonoscopy), and processed offline by thermal-desorber gas chromatography–mass spectrometry to evaluate the VOC profile. During the trial phase VOCs of interest were identified and selected, and VOC patterns able to discriminate patients from controls were set up; in the validation phase their discriminant performance was tested on blinded samples. A probabilistic neural network (PNN) validated by the leave-one-out method was used to identify the pattern of VOCs that better discriminated between the two groups. Results Some 37 patients and 41 controls were included in the trial phase. Application of a PNN to a pattern of 15 compounds showed a discriminant performance with a sensitivity of 86 per cent, a specificity of 83 per cent and an accuracy of 85 per cent (area under the receiver operating characteristic (ROC) curve 0·852). The accuracy of PNN analysis was confirmed in the validation phase on a further 25 subjects; the model correctly assigned 19 patients, giving an overall accuracy of 76 per cent. Conclusion The pattern of VOCs in patients with colorectal cancer was different from that in healthy controls. The PNN in this study was able to discriminate patients with colorectal cancer with an accuracy of over 75 per cent. Breath VOC analysis appears to have potential clinical application in colorectal cancer screening, although further studies are required to confirm its reliability in heterogeneous clinical settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AM发布了新的文献求助10
10秒前
qrwyqjbsd应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
ling361完成签到,获得积分10
43秒前
铭铭铭发布了新的文献求助10
1分钟前
1分钟前
1分钟前
淡定幼荷发布了新的文献求助10
1分钟前
淡定幼荷完成签到,获得积分10
1分钟前
1分钟前
benbenca发布了新的文献求助20
2分钟前
2分钟前
liudy发布了新的文献求助10
2分钟前
孔wj发布了新的文献求助10
2分钟前
2分钟前
孔wj完成签到,获得积分10
2分钟前
sisyphus发布了新的文献求助10
2分钟前
毓雅完成签到,获得积分10
3分钟前
qz完成签到,获得积分10
3分钟前
3分钟前
共享精神应助qz采纳,获得10
3分钟前
3分钟前
脑洞疼应助早睡早起采纳,获得10
4分钟前
大方剑愁发布了新的文献求助10
4分钟前
4分钟前
qrwyqjbsd应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
大方剑愁发布了新的文献求助10
4分钟前
4分钟前
us_1999完成签到,获得积分10
4分钟前
糟糕的铁锤应助Antyonyzs采纳,获得10
5分钟前
若雨凌风完成签到,获得积分10
5分钟前
6分钟前
6分钟前
qrwyqjbsd应助科研通管家采纳,获得10
6分钟前
Akim应助科研废人采纳,获得10
7分钟前
NexerLc完成签到,获得积分10
7分钟前
7分钟前
Omni完成签到,获得积分10
7分钟前
qrwyqjbsd应助科研通管家采纳,获得10
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067253
捐赠科研通 2750111
什么是DOI,文献DOI怎么找? 1509008
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896