Deep convolutional neural networks for classifying breast cancer using infrared thermography

热成像 卷积神经网络 学习迁移 人工智能 模式识别(心理学) 乳腺癌 计算机科学 灵敏度(控制系统) 人工神经网络 深度学习 机器学习 癌症 红外线的 医学 内科学 光学 物理 工程类 电子工程
作者
Juan Carlos Torres‐Galván,Edgar Guevara,Eleazar Samuel Kolosovas-Machuca,Antonio Oceguera‐Villanueva,Jorge L. Flores,Francisco González
出处
期刊:Quantitative InfraRed Thermography [Informa]
卷期号:19 (4): 283-294 被引量:19
标识
DOI:10.1080/17686733.2021.1918514
摘要

Infrared thermography is a technique that can detect anomalies in temperature patterns which can indicate some breast pathologies including breast cancer. One limitation of the method is the absence of standardised thermography interpretation procedures. Deep learning models have been used for pattern recognition and classification of objects and have been adopted as an adjunct methodology in medical imaging diagnosis. In this paper, the use of a deep convolutional neural network (CNN) with transfer learning is proposed to automatically classify thermograms into two classes (normal and abnormal). A population of 311 female subjects was considered analysing two approaches to test the CNN’s performance: one with a balanced class distribution and the second study in a typical screening cohort, with a low prevalence of abnormal thermograms. Results showed that the transfer-learned ResNet-101 model had a sensitivity of 92.3% and a specificity of 53.8%, while with an unbalanced distribution the values were 84.6% and 65.3%, respectively. These results suggest that the model presented in this work can classify abnormal thermograms with high sensitivity which validates the use of infrared thermography as an adjunct method for breast cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
小青椒应助allen采纳,获得30
2秒前
甜甜的平蓝完成签到 ,获得积分10
2秒前
2秒前
3秒前
沐晴发布了新的文献求助10
4秒前
4秒前
陈秋妮发布了新的文献求助10
5秒前
鱼包包发布了新的文献求助10
5秒前
sunny完成签到,获得积分10
5秒前
华仔应助sy采纳,获得10
6秒前
12发布了新的文献求助10
6秒前
6秒前
YYR发布了新的文献求助10
6秒前
隐形曼青应助milos采纳,获得10
7秒前
7秒前
張肉肉发布了新的文献求助10
8秒前
Yallabo发布了新的文献求助200
9秒前
qwertyu111发布了新的文献求助10
9秒前
ethanxiang发布了新的文献求助20
11秒前
Lurant完成签到,获得积分10
12秒前
复杂的茉莉完成签到,获得积分10
12秒前
12秒前
12秒前
眼睛大的冰蓝完成签到,获得积分10
13秒前
14秒前
沐晴完成签到,获得积分10
16秒前
tsumugi发布了新的文献求助10
16秒前
hk发布了新的文献求助10
17秒前
18秒前
Owen应助冬不拉的红糖纸采纳,获得10
18秒前
ding应助Hoolyshit采纳,获得10
18秒前
18秒前
刘骁萱完成签到 ,获得积分10
19秒前
鲤鱼灵波完成签到,获得积分20
20秒前
21秒前
谢天遇你发布了新的文献求助10
21秒前
21秒前
深情安青应助直率的珍采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469534
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336346
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453599
关于科研通互助平台的介绍 1428091