Density Functional Theory Investigation of the NiO@Graphene Composite as a Urea Oxidation Catalyst in the Alkaline Electrolyte

石墨烯 尿素 吸附 无机化学 非阻塞I/O 催化作用 材料科学 化学工程 电解 解吸 复合数 电解质 电化学 化学 纳米技术 电极 有机化学 复合材料 物理化学 工程类
作者
Shun Lu,Matthew Hummel,Shuai Kang,Rajesh Pathak,Wei He,Xueqiang Qi,Zhengrong Gu
出处
期刊:ACS omega [American Chemical Society]
卷期号:6 (22): 14648-14654 被引量:30
标识
DOI:10.1021/acsomega.1c01758
摘要

Developing efficient and low-cost urea oxidation reaction (UOR) catalysts is a promising but still challenging task for environment and energy conversion technologies such as wastewater remediation and urea electrolysis. In this work, NiO nanoparticles that incorporated graphene as the NiO@Graphene composite were constructed to study the UOR process in terms of density functional theory. The single-atom model, which differed from the previous heterojunction model, was employed for the adsorption/desorption of urea and CO2 in the alkaline media. As demonstrated from the calculated results, NiO@Graphene prefers to adsorb the hydroxyl group than urea in the initial stage due to the stronger adsorption energy of the hydroxyl group. After NiOOH@Graphene was formed in the alkaline electrolyte, it presents excellent desorption energy of CO2 in the rate-determining step. Electronic density difference and the d band center diagram further confirmed that the Ni(III) species is the most favorable site for urea oxidation while facilitating charge transfer between urea and NiO@Graphene. Moreover, graphene provides a large surface for the incorporation of NiO nanoparticles, enhancing the electron transfer between NiOOH and graphene and promoting the mass transport in the alkaline electrolyte. Notably, this work provides theoretical guidance for the electrochemical urea oxidation work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的星星完成签到,获得积分20
刚刚
amao发布了新的文献求助10
1秒前
3秒前
自觉若灵完成签到,获得积分10
5秒前
思源应助Galaxy采纳,获得10
5秒前
6秒前
sususuper完成签到 ,获得积分10
8秒前
9秒前
11秒前
畅快的鱼发布了新的文献求助20
12秒前
13秒前
13秒前
16秒前
16秒前
CodeCraft应助加特林采纳,获得10
17秒前
仙女本仙发布了新的文献求助10
17秒前
Tink完成签到,获得积分10
18秒前
科研兄发布了新的文献求助10
18秒前
18秒前
小蘑菇应助爱听歌的忆翠采纳,获得10
22秒前
Joel发布了新的文献求助10
23秒前
pluto应助dingyifan采纳,获得30
25秒前
25秒前
25秒前
Hrx完成签到,获得积分10
25秒前
27秒前
28秒前
畅快的鱼完成签到,获得积分10
28秒前
NexusExplorer应助自觉若灵采纳,获得30
28秒前
SciGPT应助蠢蠢的死法采纳,获得30
29秒前
Grool发布了新的文献求助10
29秒前
肉肉的小屋完成签到,获得积分10
30秒前
30秒前
姬霓太美完成签到,获得积分10
31秒前
Galaxy发布了新的文献求助10
31秒前
苗条小甜瓜完成签到,获得积分10
32秒前
容荣发布了新的文献求助10
33秒前
33秒前
34秒前
enchanted发布了新的文献求助10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313740
求助须知:如何正确求助?哪些是违规求助? 2946062
关于积分的说明 8528196
捐赠科研通 2621645
什么是DOI,文献DOI怎么找? 1434003
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650658