Protein Structure Prediction: Conventional and Deep Learning Perspectives

计算机科学 深度学习 人工智能 蛋白质结构预测 蛋白质结构 化学 生物化学
作者
V. A. Jisna,P. B. Jayaraj
出处
期刊:Protein Journal [Springer Science+Business Media]
卷期号:40 (4): 522-544 被引量:59
标识
DOI:10.1007/s10930-021-10003-y
摘要

Protein structure prediction is a way to bridge the sequence-structure gap, one of the main challenges in computational biology and chemistry. Predicting any protein's accurate structure is of paramount importance for the scientific community, as these structures govern their function. Moreover, this is one of the complicated optimization problems that computational biologists have ever faced. Experimental protein structure determination methods include X-ray crystallography, Nuclear Magnetic Resonance Spectroscopy and Electron Microscopy. All of these are tedious and time-consuming procedures that require expertise. To make the process less cumbersome, scientists use predictive tools as part of computational methods, using data consolidated in the protein repositories. In recent years, machine learning approaches have raised the interest of the structure prediction community. Most of the machine learning approaches for protein structure prediction are centred on co-evolution based methods. The accuracy of these approaches depends on the number of homologous protein sequences available in the databases. The prediction problem becomes challenging for many proteins, especially those without enough sequence homologs. Deep learning methods allow for the extraction of intricate features from protein sequence data without making any intuitions. Accurately predicted protein structures are employed for drug discovery, antibody designs, understanding protein-protein interactions, and interactions with other molecules. This article provides a review of conventional and deep learning approaches in protein structure prediction. We conclude this review by outlining a few publicly available datasets and deep learning architectures currently employed for protein structure prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助1vvvv采纳,获得10
1秒前
2秒前
科研通AI5应助优势构象采纳,获得10
4秒前
5秒前
5秒前
小李老博关注了科研通微信公众号
6秒前
MING_Q发布了新的文献求助10
7秒前
hqh发布了新的文献求助10
10秒前
领导范儿应助William采纳,获得10
10秒前
shawna关注了科研通微信公众号
10秒前
学有所成关注了科研通微信公众号
15秒前
MING_Q完成签到,获得积分10
17秒前
一方完成签到 ,获得积分10
18秒前
华仔应助hqh采纳,获得10
20秒前
世界第一初恋完成签到,获得积分10
22秒前
文献完成签到,获得积分20
23秒前
可爱的函函应助背书强采纳,获得10
24秒前
遇上就这样吧应助wdb采纳,获得10
28秒前
dandna完成签到 ,获得积分10
30秒前
李爱国应助背书强采纳,获得10
34秒前
FashionBoy应助文献采纳,获得10
36秒前
39秒前
李健的小迷弟应助背书强采纳,获得10
43秒前
优势构象发布了新的文献求助10
45秒前
46秒前
汉堡包应助旺仔同学采纳,获得10
47秒前
大模型应助吱吱采纳,获得10
52秒前
王军鹏发布了新的文献求助10
52秒前
777发布了新的文献求助10
52秒前
azure完成签到,获得积分10
53秒前
zqf发布了新的文献求助10
53秒前
白许四十完成签到,获得积分10
54秒前
nino应助Alimeteors采纳,获得10
55秒前
优势构象完成签到,获得积分10
57秒前
59秒前
zhzhzh完成签到,获得积分10
1分钟前
1分钟前
zqf完成签到,获得积分20
1分钟前
科研通AI5应助谢香辣采纳,获得10
1分钟前
岳岳发布了新的文献求助10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967