Protein Structure Prediction: Conventional and Deep Learning Perspectives

计算机科学 深度学习 结构生物学 人工智能 蛋白质结构数据库 蛋白质结构预测 机器学习 蛋白质结构 蛋白质测序 生物 蛋白质功能预测 蛋白质功能 肽序列 序列数据库 生物化学 基因
作者
V. A. Jisna,P. B. Jayaraj
出处
期刊:Protein Journal [Springer Nature]
卷期号:40 (4): 522-544 被引量:53
标识
DOI:10.1007/s10930-021-10003-y
摘要

Protein structure prediction is a way to bridge the sequence-structure gap, one of the main challenges in computational biology and chemistry. Predicting any protein's accurate structure is of paramount importance for the scientific community, as these structures govern their function. Moreover, this is one of the complicated optimization problems that computational biologists have ever faced. Experimental protein structure determination methods include X-ray crystallography, Nuclear Magnetic Resonance Spectroscopy and Electron Microscopy. All of these are tedious and time-consuming procedures that require expertise. To make the process less cumbersome, scientists use predictive tools as part of computational methods, using data consolidated in the protein repositories. In recent years, machine learning approaches have raised the interest of the structure prediction community. Most of the machine learning approaches for protein structure prediction are centred on co-evolution based methods. The accuracy of these approaches depends on the number of homologous protein sequences available in the databases. The prediction problem becomes challenging for many proteins, especially those without enough sequence homologs. Deep learning methods allow for the extraction of intricate features from protein sequence data without making any intuitions. Accurately predicted protein structures are employed for drug discovery, antibody designs, understanding protein-protein interactions, and interactions with other molecules. This article provides a review of conventional and deep learning approaches in protein structure prediction. We conclude this review by outlining a few publicly available datasets and deep learning architectures currently employed for protein structure prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小船发布了新的文献求助10
3秒前
落叶完成签到 ,获得积分10
3秒前
Dddd完成签到,获得积分10
4秒前
西西完成签到 ,获得积分10
4秒前
大模型应助whuhustwit采纳,获得10
4秒前
5秒前
义气莫茗完成签到 ,获得积分10
5秒前
5秒前
dmmmm发布了新的文献求助10
7秒前
Lala完成签到,获得积分10
7秒前
jack完成签到,获得积分10
7秒前
wanci应助平淡的水风采纳,获得10
8秒前
8秒前
优秀若剑完成签到,获得积分10
10秒前
柯柯啦啦发布了新的文献求助10
10秒前
Lala发布了新的文献求助30
11秒前
上官若男应助妥妥酱采纳,获得10
12秒前
Ling完成签到,获得积分10
12秒前
14秒前
科研通AI2S应助diu采纳,获得10
15秒前
16秒前
漂亮念真完成签到,获得积分20
16秒前
JunJun完成签到 ,获得积分10
16秒前
莞莞类卿完成签到,获得积分10
16秒前
轻松盼山完成签到,获得积分10
18秒前
巴拉巴拉发布了新的文献求助10
18秒前
19秒前
20秒前
NICKPLZ完成签到,获得积分10
20秒前
1234发布了新的文献求助10
21秒前
玉_往前走完成签到,获得积分20
23秒前
星辰大海应助小船采纳,获得10
24秒前
李健应助单薄电源采纳,获得10
24秒前
爆米花应助糖哦采纳,获得10
25秒前
wsh发布了新的文献求助10
25秒前
Vincent发布了新的文献求助10
26秒前
28秒前
29秒前
1234完成签到,获得积分10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159847
求助须知:如何正确求助?哪些是违规求助? 2810808
关于积分的说明 7889521
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315173
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012