Exploring the fuel structure dependence of laminar burning velocity: A machine learning based group contribution approach

燃烧 层流 化学 不饱和度 碳氢化合物 航程(航空) 热力学 有机化学 材料科学 物理 复合材料
作者
Florian vom Lehn,Liming Cai,Bruno Copa Cáceres,Heinz Pitsch
出处
期刊:Combustion and Flame [Elsevier BV]
卷期号:232: 111525-111525 被引量:38
标识
DOI:10.1016/j.combustflame.2021.111525
摘要

The laminar burning velocity (LBV) is a fundamental property of a fuel/oxidizer mixture with high impact on combustion processes in practical engines. Profound knowledge of its dependence on the underlying molecular structures of hydrocarbon and oxygenated hydrocarbon fuels is of high interest. In the present work, a quantitative structure-property relationship model is developed for the first time to predict the LBVs of a wide range of fuels. For this purpose, an artificial neural network is trained based on a training set consisting of both the experimental LBV values of 124 fuel compounds and additional data obtained from numerical simulations with a detailed kinetic model. Twelve molecular groups as well as pressure, temperature, and fuel/air equivalence ratio serve as input features to the model. Cross-validation reveals a mean absolute error of 3.3 cm/s when applying the model to fuels, whose LBV datapoints were not used for training. In order to gain insights into the underlying fuel structure dependence of LBV, the model is then applied to analyze the functional group effects at unified conditions by means of sensitivity analysis and detailed fuel comparisons. It is found that unsaturation increases the LBV, while methyl substitution consistently has a negative effect for the wide range of fuel structures considered, which confirms similar findings in the literature. More interestingly, while carbonyl groups in ketones and aldehydes, ether groups in ethers, acetals, furanics, and oxygenated benzenoids, as well as hydroxy groups in n-alcohols tend to increase the LBV compared to corresponding non-oxygenated fuels of similar structures, ester and carbonate functional groups have a clearly negative impact. Overall, the results demonstrate that a group contribution approach in combination with a machine learning methodology is capable of predicting the LBVs of a wide range of fuel structures with acceptable accuracy, which can be useful for future fuel design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尛海完成签到,获得积分10
1秒前
木子李发布了新的文献求助10
2秒前
xiaofan完成签到,获得积分10
6秒前
pigeon完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
专注鼠标完成签到,获得积分10
9秒前
小熊猫完成签到,获得积分10
10秒前
所所应助懵了采纳,获得10
11秒前
科研通AI5应助Laus采纳,获得10
12秒前
晓畅完成签到,获得积分10
12秒前
animages发布了新的文献求助10
12秒前
14秒前
无禮发布了新的文献求助10
14秒前
勿明发布了新的文献求助10
15秒前
kkxix发布了新的文献求助10
15秒前
dream完成签到 ,获得积分10
15秒前
MISSIW完成签到,获得积分10
15秒前
科研通AI5应助甜磕采纳,获得10
16秒前
科研小萌新完成签到 ,获得积分20
18秒前
19秒前
zxy完成签到 ,获得积分10
20秒前
冷傲的道罡完成签到,获得积分10
20秒前
裴仰纳发布了新的文献求助10
22秒前
蔓蔓子完成签到 ,获得积分10
22秒前
无私可乐完成签到,获得积分10
24秒前
kingwill应助Akasazi采纳,获得20
25秒前
个性德天完成签到,获得积分10
27秒前
27秒前
5年科研3年毕业完成签到,获得积分10
27秒前
万能图书馆应助热心枕头采纳,获得10
28秒前
28秒前
cheng发布了新的文献求助10
29秒前
kangkang完成签到,获得积分10
29秒前
Lucas应助木子李采纳,获得10
30秒前
wang完成签到,获得积分10
31秒前
架子猫发布了新的文献求助10
32秒前
Owen应助忧虑的代容采纳,获得30
37秒前
无禮完成签到,获得积分10
38秒前
高分求助中
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Syntheses of Lanthanide and Actinide Compounds 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3706139
求助须知:如何正确求助?哪些是违规求助? 3255274
关于积分的说明 9894211
捐赠科研通 2967625
什么是DOI,文献DOI怎么找? 1627397
邀请新用户注册赠送积分活动 771483
科研通“疑难数据库(出版商)”最低求助积分说明 743382