Attention, please! A survey of neural attention models in deep learning

计算机科学 深度学习 人工智能 数据科学 深层神经网络 人工神经网络 机器学习
作者
Alana de Santana Correia,Esther Luna Colombini
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:55 (8): 6037-6124 被引量:207
标识
DOI:10.1007/s10462-022-10148-x
摘要

In humans, Attention is a core property of all perceptual and cognitive operations. Given our limited ability to process competing sources, attention mechanisms select, modulate, and focus on the information most relevant to behavior. For decades, concepts and functions of attention have been studied in philosophy, psychology, neuroscience, and computing. For the last 6 years, this property has been widely explored in deep neural networks. Currently, the state-of-the-art in Deep Learning is represented by neural attention models in several application domains. This survey provides a comprehensive overview and analysis of developments in neural attention models. We systematically reviewed hundreds of architectures in the area, identifying and discussing those in which attention has shown a significant impact. We also developed and made public an automated methodology to facilitate the development of reviews in the area. By critically analyzing 650 works, we describe the primary uses of attention in convolutional, recurrent networks, and generative models, identifying common subgroups of uses and applications. Furthermore, we describe the impact of attention in different application domains and their impact on neural networks’ interpretability. Finally, we list possible trends and opportunities for further research, hoping that this review will provide a succinct overview of the main attentional models in the area and guide researchers in developing future approaches that will drive further improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒的诗桃完成签到,获得积分0
1秒前
NexusExplorer应助sunshine采纳,获得10
2秒前
陈爽er发布了新的文献求助10
3秒前
HAO完成签到,获得积分10
4秒前
科研通AI2S应助陈爽er采纳,获得10
8秒前
9秒前
9秒前
9秒前
10秒前
大模型应助tidongzhiwu采纳,获得10
10秒前
研友_LwlRen完成签到 ,获得积分10
11秒前
materials_发布了新的文献求助10
12秒前
称心的西牛完成签到 ,获得积分10
12秒前
踏实的无敌完成签到,获得积分10
12秒前
栀璃鸳挽发布了新的文献求助30
14秒前
Yogita完成签到,获得积分10
14秒前
dasheng_发布了新的文献求助10
14秒前
情怀应助超爱茶多酚采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
大地上的鱼完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
materials_完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
LjXiong完成签到,获得积分10
22秒前
23秒前
xiaoE发布了新的文献求助10
23秒前
JJJJJJJJJJJ发布了新的文献求助10
23秒前
Yygz314完成签到,获得积分10
24秒前
tidongzhiwu发布了新的文献求助10
25秒前
赘婿应助吴逸彪采纳,获得10
26秒前
26秒前
曾绍炜完成签到,获得积分10
27秒前
ZZ完成签到,获得积分10
28秒前
共享精神应助IDneverd采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734681
求助须知:如何正确求助?哪些是违规求助? 5355580
关于积分的说明 15327525
捐赠科研通 4879249
什么是DOI,文献DOI怎么找? 2621785
邀请新用户注册赠送积分活动 1570998
关于科研通互助平台的介绍 1527750