Attention, please! A survey of neural attention models in deep learning

计算机科学 深度学习 人工智能 数据科学 深层神经网络 人工神经网络 机器学习
作者
Alana de Santana Correia,Esther Luna Colombini
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:55 (8): 6037-6124 被引量:207
标识
DOI:10.1007/s10462-022-10148-x
摘要

In humans, Attention is a core property of all perceptual and cognitive operations. Given our limited ability to process competing sources, attention mechanisms select, modulate, and focus on the information most relevant to behavior. For decades, concepts and functions of attention have been studied in philosophy, psychology, neuroscience, and computing. For the last 6 years, this property has been widely explored in deep neural networks. Currently, the state-of-the-art in Deep Learning is represented by neural attention models in several application domains. This survey provides a comprehensive overview and analysis of developments in neural attention models. We systematically reviewed hundreds of architectures in the area, identifying and discussing those in which attention has shown a significant impact. We also developed and made public an automated methodology to facilitate the development of reviews in the area. By critically analyzing 650 works, we describe the primary uses of attention in convolutional, recurrent networks, and generative models, identifying common subgroups of uses and applications. Furthermore, we describe the impact of attention in different application domains and their impact on neural networks’ interpretability. Finally, we list possible trends and opportunities for further research, hoping that this review will provide a succinct overview of the main attentional models in the area and guide researchers in developing future approaches that will drive further improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
声声慢发布了新的文献求助10
刚刚
1秒前
bkagyin应助Feng5945采纳,获得10
1秒前
浮浮世世发布了新的文献求助80
1秒前
科目三应助liz采纳,获得30
3秒前
量子星尘发布了新的文献求助10
4秒前
鹿小新完成签到 ,获得积分0
5秒前
6秒前
高兴的大米完成签到,获得积分10
6秒前
郭丽莹发布了新的文献求助30
8秒前
10秒前
always发布了新的文献求助30
11秒前
qiuqiu0999完成签到,获得积分10
11秒前
505完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
钮钴禄鬼鬼完成签到 ,获得积分10
14秒前
14秒前
Criminology34应助无语的成仁采纳,获得10
15秒前
Criminology34应助无语的成仁采纳,获得10
15秒前
linn发布了新的文献求助10
15秒前
Feng5945发布了新的文献求助10
16秒前
千羽完成签到,获得积分10
16秒前
三三得九完成签到 ,获得积分10
16秒前
17秒前
科研通AI6.1应助明理听云采纳,获得10
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
always完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
汉堡包应助111采纳,获得10
24秒前
25秒前
qiuqiu0999发布了新的文献求助10
26秒前
星辰大海应助随机采纳,获得10
26秒前
26秒前
大气的冷亦完成签到,获得积分10
27秒前
脑洞疼应助Feng5945采纳,获得10
29秒前
log完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767182
求助须知:如何正确求助?哪些是违规求助? 5568519
关于积分的说明 15414583
捐赠科研通 4901198
什么是DOI,文献DOI怎么找? 2636869
邀请新用户注册赠送积分活动 1585074
关于科研通互助平台的介绍 1540240