Attention, please! A survey of neural attention models in deep learning

可解释性 计算机科学 深度学习 人工智能 生成语法 过程(计算) 认知科学 感知 数据科学 认知 财产(哲学) 卷积神经网络 人工神经网络 机器学习 心理学 神经科学 认识论 操作系统 哲学
作者
Alana de Santana Correia,Esther Luna Colombini
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:55 (8): 6037-6124 被引量:94
标识
DOI:10.1007/s10462-022-10148-x
摘要

In humans, Attention is a core property of all perceptual and cognitive operations. Given our limited ability to process competing sources, attention mechanisms select, modulate, and focus on the information most relevant to behavior. For decades, concepts and functions of attention have been studied in philosophy, psychology, neuroscience, and computing. For the last 6 years, this property has been widely explored in deep neural networks. Currently, the state-of-the-art in Deep Learning is represented by neural attention models in several application domains. This survey provides a comprehensive overview and analysis of developments in neural attention models. We systematically reviewed hundreds of architectures in the area, identifying and discussing those in which attention has shown a significant impact. We also developed and made public an automated methodology to facilitate the development of reviews in the area. By critically analyzing 650 works, we describe the primary uses of attention in convolutional, recurrent networks, and generative models, identifying common subgroups of uses and applications. Furthermore, we describe the impact of attention in different application domains and their impact on neural networks’ interpretability. Finally, we list possible trends and opportunities for further research, hoping that this review will provide a succinct overview of the main attentional models in the area and guide researchers in developing future approaches that will drive further improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助lllkkk采纳,获得10
刚刚
高贵冬卉发布了新的文献求助10
1秒前
33发布了新的文献求助30
1秒前
3秒前
ding应助lllth采纳,获得10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
温暖砖头发布了新的文献求助10
9秒前
茶树菇发布了新的文献求助10
10秒前
Rabbit完成签到 ,获得积分10
11秒前
燧人氏发布了新的文献求助10
12秒前
哆来米完成签到,获得积分10
12秒前
项锡凯完成签到 ,获得积分10
14秒前
16秒前
wang完成签到,获得积分10
17秒前
wang发布了新的文献求助20
21秒前
无私啤酒完成签到,获得积分10
22秒前
lllkkk发布了新的文献求助10
22秒前
22秒前
24秒前
瘦瘦白薇发布了新的文献求助10
24秒前
小马甲应助33采纳,获得30
25秒前
赵文浩应助LingYun采纳,获得30
25秒前
魏头头发布了新的文献求助10
26秒前
袁保蓉发布了新的文献求助10
28秒前
充电宝应助曲幻梅采纳,获得10
29秒前
eric888应助eden采纳,获得30
30秒前
高贵冬卉完成签到 ,获得积分10
31秒前
我是老大应助科研通管家采纳,获得10
31秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
Downey应助科研通管家采纳,获得150
32秒前
共享精神应助茶树菇采纳,获得10
32秒前
JamesPei应助科研通管家采纳,获得10
32秒前
脑洞疼应助科研通管家采纳,获得20
32秒前
桐桐应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049387
求助须知:如何正确求助?哪些是违规求助? 4277396
关于积分的说明 13333673
捐赠科研通 4092082
什么是DOI,文献DOI怎么找? 2239476
邀请新用户注册赠送积分活动 1246338
关于科研通互助平台的介绍 1174900