亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention, please! A survey of neural attention models in deep learning

计算机科学 深度学习 人工智能 数据科学 深层神经网络 人工神经网络 机器学习
作者
Alana de Santana Correia,Esther Luna Colombini
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:55 (8): 6037-6124 被引量:207
标识
DOI:10.1007/s10462-022-10148-x
摘要

In humans, Attention is a core property of all perceptual and cognitive operations. Given our limited ability to process competing sources, attention mechanisms select, modulate, and focus on the information most relevant to behavior. For decades, concepts and functions of attention have been studied in philosophy, psychology, neuroscience, and computing. For the last 6 years, this property has been widely explored in deep neural networks. Currently, the state-of-the-art in Deep Learning is represented by neural attention models in several application domains. This survey provides a comprehensive overview and analysis of developments in neural attention models. We systematically reviewed hundreds of architectures in the area, identifying and discussing those in which attention has shown a significant impact. We also developed and made public an automated methodology to facilitate the development of reviews in the area. By critically analyzing 650 works, we describe the primary uses of attention in convolutional, recurrent networks, and generative models, identifying common subgroups of uses and applications. Furthermore, we describe the impact of attention in different application domains and their impact on neural networks’ interpretability. Finally, we list possible trends and opportunities for further research, hoping that this review will provide a succinct overview of the main attentional models in the area and guide researchers in developing future approaches that will drive further improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
FIN发布了新的文献求助50
27秒前
我是老大应助散装洋芋采纳,获得10
29秒前
在水一方应助lj采纳,获得10
33秒前
46秒前
lj发布了新的文献求助10
53秒前
54秒前
木昆完成签到 ,获得积分10
56秒前
FIN发布了新的文献求助50
1分钟前
1分钟前
韩韩完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
传奇3应助hail采纳,获得10
1分钟前
1分钟前
hail发布了新的文献求助10
1分钟前
2分钟前
散装洋芋发布了新的文献求助10
2分钟前
Hillson完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
nefu biology完成签到,获得积分10
2分钟前
nefu biology发布了新的文献求助10
2分钟前
3分钟前
梦将军应助FIN采纳,获得50
3分钟前
3分钟前
爱笑半莲发布了新的文献求助10
3分钟前
Christina完成签到,获得积分20
3分钟前
爱笑半莲完成签到,获得积分10
3分钟前
3分钟前
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Lucas应助Christina采纳,获得30
3分钟前
wmz完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554861
求助须知:如何正确求助?哪些是违规求助? 4639412
关于积分的说明 14656222
捐赠科研通 4581365
什么是DOI,文献DOI怎么找? 2512722
邀请新用户注册赠送积分活动 1487466
关于科研通互助平台的介绍 1458410