亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention, please! A survey of neural attention models in deep learning

计算机科学 深度学习 人工智能 数据科学 深层神经网络 人工神经网络 机器学习
作者
Alana de Santana Correia,Esther Luna Colombini
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:55 (8): 6037-6124 被引量:207
标识
DOI:10.1007/s10462-022-10148-x
摘要

In humans, Attention is a core property of all perceptual and cognitive operations. Given our limited ability to process competing sources, attention mechanisms select, modulate, and focus on the information most relevant to behavior. For decades, concepts and functions of attention have been studied in philosophy, psychology, neuroscience, and computing. For the last 6 years, this property has been widely explored in deep neural networks. Currently, the state-of-the-art in Deep Learning is represented by neural attention models in several application domains. This survey provides a comprehensive overview and analysis of developments in neural attention models. We systematically reviewed hundreds of architectures in the area, identifying and discussing those in which attention has shown a significant impact. We also developed and made public an automated methodology to facilitate the development of reviews in the area. By critically analyzing 650 works, we describe the primary uses of attention in convolutional, recurrent networks, and generative models, identifying common subgroups of uses and applications. Furthermore, we describe the impact of attention in different application domains and their impact on neural networks’ interpretability. Finally, we list possible trends and opportunities for further research, hoping that this review will provide a succinct overview of the main attentional models in the area and guide researchers in developing future approaches that will drive further improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助lawang采纳,获得10
6秒前
打打应助lawang采纳,获得10
6秒前
充电宝应助lawang采纳,获得10
6秒前
彭于晏应助lawang采纳,获得10
6秒前
orixero应助lawang采纳,获得10
6秒前
香蕉觅云应助lawang采纳,获得10
6秒前
天天快乐应助lawang采纳,获得10
6秒前
英俊的铭应助lawang采纳,获得10
6秒前
隐形曼青应助lawang采纳,获得10
6秒前
赘婿应助lawang采纳,获得10
6秒前
17秒前
paradiselost发布了新的文献求助10
22秒前
34秒前
CipherSage应助xiuxiu125采纳,获得10
36秒前
46秒前
50秒前
54秒前
57秒前
kishk发布了新的文献求助10
59秒前
huhdcid发布了新的文献求助30
59秒前
paradiselost完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
FashionBoy应助huhdcid采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658155
求助须知:如何正确求助?哪些是违规求助? 4817538
关于积分的说明 15080884
捐赠科研通 4816452
什么是DOI,文献DOI怎么找? 2577381
邀请新用户注册赠送积分活动 1532357
关于科研通互助平台的介绍 1490989