Comparison of Real- and Complex-Valued NN Equalizers for Photonics-Aided 90-Gbps D-band PAM-4 Coherent Detection

发射机 电子工程 计算机科学 人工神经网络 均衡(音频) 数据传输 光子学 Softmax函数 无线 偏移量(计算机科学) 电信 频道(广播) 工程类 计算机硬件 人工智能 物理 光学 程序设计语言
作者
Wen Zhou,Junting Shi,Li Zhao,Kaihui Wang,Chen Wang,Yanyi Wang,Miao Kong,Feng Wang,Cuiwei Liu,Junjie Ding,Jianjun Yu
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:39 (21): 6858-6868 被引量:32
标识
DOI:10.1109/jlt.2021.3109126
摘要

5G defines below 100 GHz as the millimeter-wave bands, whereas 100 GHz - 3 THz is categorized as THz band in 6G. Deep leraning (DL) is expected to enable a significant paradigm shift in 6G wireless networks. In this paper, D-band 90-Gbps single channel PAM-4 signal generation and transmission over 10-km SMF and 3-m wireless link at 140-GHz can be achieved. A novel complex-valued neural network (CVNN) equalizer using ‘ℂReLU’ activation function to directly recover PAM-4 signals from received noised signals is demonstrated. There are three DSP options in the experiment. In Opt.1, firstly conducted cascaded multi-modulus algorithm (CMMA) pre-equalization (pre-EQ) at transmitter, then processed via frequency offset estimation (FOE), carrier phase recovery (CPR) and finally real-valued neural network (RVNN) equalization at receiver. Here, the RVNN equalizers include DNN with a softmax output layer, two-step joint-DNN equalizer and LSTM. The experimental results show that LSTM-based equalizer outperforms the other real NN-based equalizers by average 0.5 to 1.5 dB at BER of 10−3 magnitude. Differently from Opt. 1, real-valued CMMA pre-EQ at transmitter is unexpected for CVNN in the other two options. In Opt. 2, we only combine down-conversion and CVNN regarded as ‘pure data-driven’ training at receiver. This pure data-driven CVNN equalizer improves BER a lot and also has a larger computation burden, especially BER is as low as 1 × 10−4 with n0 = 571 and n1 = 200 training cells and the time complexity reaches 350000 in one iteration. Thanks to the aid of traditional mathematical-oriented models including FOE and CPR, the computation burden of CVNN in Opt. 3 is released significantly. Furthermore, we compare the performance of CVNN and RVNN in terms of BER decision accuracy, time complexity and receiver sensitivity. Followed by the same DSP with the same complexity, the comparison result between DNN and CVNN in the same structure of [371-260-1] with 11000 samples and 300 epochs shows that CVNN performs better due to its reservation of phase information. Therefore, we believe that the joint use of model-based, e.g., FOE, CPR steps and complex DL-based techniques has a potential for the future 6G wireless physical layer algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Sophie采纳,获得10
1秒前
1秒前
荷月初六发布了新的文献求助20
1秒前
2秒前
lai完成签到,获得积分10
2秒前
波特卡斯D艾斯完成签到 ,获得积分10
3秒前
干亿先完成签到 ,获得积分10
3秒前
jubikbubik发布了新的文献求助10
3秒前
Jinnnnn完成签到,获得积分10
3秒前
GXS发布了新的文献求助10
4秒前
orixero应助inori采纳,获得10
6秒前
芒果完成签到,获得积分10
6秒前
Zzoe_S发布了新的文献求助30
6秒前
大个应助南昌黑人采纳,获得10
7秒前
研友_VZG7GZ应助糖糖采纳,获得10
8秒前
汉堡包应助Sunrise采纳,获得10
8秒前
8秒前
9秒前
潇洒的诗桃应助笨笨采纳,获得10
10秒前
qcck完成签到,获得积分10
11秒前
彭于晏应助navvv采纳,获得10
11秒前
11秒前
11秒前
you完成签到 ,获得积分10
12秒前
李爱国应助求助人采纳,获得10
12秒前
英俊的铭应助lucas采纳,获得10
12秒前
科研通AI5应助大块采纳,获得30
12秒前
13秒前
FashionBoy应助绿水杯采纳,获得10
13秒前
4444l完成签到,获得积分10
14秒前
14秒前
烟花应助大胆的书白采纳,获得10
14秒前
呐呐呐发布了新的文献求助10
14秒前
张星星发布了新的文献求助10
16秒前
搞科研的静静完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
17秒前
18秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702336
求助须知:如何正确求助?哪些是违规求助? 3252249
关于积分的说明 9878392
捐赠科研通 2964282
什么是DOI,文献DOI怎么找? 1625586
邀请新用户注册赠送积分活动 770101
科研通“疑难数据库(出版商)”最低求助积分说明 742762