Per- and polyfluoroalkyl substances (PFAS) are synthetic organic molecules used to manufacture various consumer and industrials products. In PFAS, the CF bond is stable, which renders these compounds chemically stable and prevents their breakdown. Several PFAS treatment processes such as adsorption, photolysis and photocatalysis, bioremediation, sonolysis, electrochemical oxidation, etc., have been explored and are being developed. The present review article has critically summarized degradative technologies and provides in-depth knowledge of photodegradation, electrochemical degradation, chemical oxidation, and reduction mineralization mechanism. Also, novel non-degradative technologies, including nano-adsorbents, natural and surface-modified clay minerals/zeolites, calixarene-based polymers, and molecularly imprinted polymers and adsorbents derived from biomaterials are discussed in detail. Of these novel approaches photocatalysis combined with membrane filtration or electrochemical oxidation via a treatment train approach shows promising results in removing PFAS in natural waters. The photocatalytic mineralization mechanism of PFOA is discussed, leading to recommendations for future research on novel remediation strategies for removing PFAS from water.