Federated Transfer Learning for Intelligent Fault Diagnostics Using Deep Adversarial Networks With Data Privacy

计算机科学 对抗制 初始化 联合学习 稳健性(进化) 一致性(知识库) 学习迁移 人工智能 机器学习 深度学习 信息隐私 方案(数学) 数据挖掘 计算机安全 生物化学 基因 数学分析 化学 程序设计语言 数学
作者
Zhang We,Xiang Li
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 430-439 被引量:155
标识
DOI:10.1109/tmech.2021.3065522
摘要

Intelligent data-driven machinery fault diagnosis methods have been popularly developed in the past years. While fairly high diagnosis accuracies have been obtained, large amounts of labeled training data are mostly required, which are difficult to collect in practice. The promising collaborative model training solution with multiple users poses high demands on data privacy due to conflict of interests. Furthermore, in the real industries, the data from different users can be usually collected from different machine operating conditions. The domain shift phenomenon and data privacy concern make the joint model training scheme quite challenging. To address this issue, a federated transfer learning method for fault diagnosis is proposed in this article. Different models can be used by different users to enhance data privacy. A federal initialization stage is introduced to keep similar data structures in distributed feature extractions, and a federated communication stage is further implemented using deep adversarial learning. A prediction consistency scheme is also adopted to increase model robustness. Experiments on two real-world datasets suggest the proposed federated transfer learning method is promising for real industrial applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枕星完成签到 ,获得积分10
1秒前
酷波er应助caoruyuan采纳,获得10
2秒前
乔雪完成签到,获得积分10
2秒前
ccm应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
3秒前
YsGao应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
andou应助科研通管家采纳,获得10
3秒前
ccm应助科研通管家采纳,获得10
3秒前
Dali应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
PJJJ发布了新的文献求助10
3秒前
4秒前
高高的平蓝应助helitrope采纳,获得100
4秒前
甘乐完成签到 ,获得积分10
6秒前
科研通AI6应助rei402采纳,获得10
7秒前
孙博发布了新的文献求助10
8秒前
酶切完成签到,获得积分10
8秒前
8秒前
Owen应助血绣采纳,获得10
10秒前
12秒前
12秒前
Orange应助枕星采纳,获得10
12秒前
li完成签到,获得积分10
13秒前
CodeCraft应助积极擎汉采纳,获得10
13秒前
14秒前
费劲来到这的Rua完成签到,获得积分10
14秒前
曼珠沙华发布了新的文献求助10
15秒前
worrysyx完成签到,获得积分10
17秒前
huihui发布了新的文献求助10
17秒前
星辰大海应助sasa采纳,获得10
18秒前
20秒前
20秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314