已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Artificial Intelligence Model for Predicting the 5-Year Survival Status of Osteosarcoma Patients Based on the SEER Database and XGBoost Algorithm

骨肉瘤 计算机科学 医学 癌症 人工智能 肿瘤科 预测建模 数据库 生存分析 比例危险模型 机器学习 逻辑回归 协变量
作者
Jiuzhou Jiang,Yiyun Wang,Pengchen Qiu,Chenchen Zhao,Bao Qian,Xianfeng Lin,Shunwu Fan
出处
期刊:Social Science Research Network
标识
DOI:10.2139/ssrn.3420374
摘要

Osteosarcoma is the most common bone malignancy, with the highest incidence in children and adolescents. Survival rate prediction is important for improving prognosis and planning therapy. However, there is still no prediction model with a high accuracy rate for osteosarcoma. Therefore, we aimed to construct an artificial intelligence model for predicting the 5-year survival of osteosarcoma patients by using extreme gradient boosting (XGBoost), a large-scale machine-learning algorithm. We identified cases of osteosarcoma in the Surveillance, Epidemiology, and End Results (SEER) Research Database (2004-2014) and excluded substandard samples. The study population was 835 and was divided into the training set (n = 668) and validation set (n = 167). Characteristics selected via survival analyses were used to construct the model. Receiver operating characteristic and decision curve analyses were performed to evaluate the prediction model. Age, primary tumor site, histological grade, extension stage, tumor size, local lymphatic metastasis, distant metastasis, radiation, chemotherapy and surgery were selected as the characteristics to construct the XGBoost model. The accuracy of the prediction model was excellent both in the training set (AUC = 0.977) and the validation set (AUC = 0.911). Decision curve analyses proved the model could be used to support clinical decisions. Two other representative artificial intelligence models (support vector machine and Bayesian network) were also tested and proved inferior to the XGBoost model. XGBoost is an effective algorithm for predicting 5-year survival of osteosarcoma patients. Our prediction model had excellent accuracy and is therefore useful in clinical settings. Funding Statement: This work was supported in part by the National Nature Science Fund of China (81702143, 81772387 and 81472064); the Public Projects of Zhejiang Province (LGF19H060013) and the Natural Science Foundation of Zhejiang Province of China (LQ16C110001). Declaration of Interests: The authors declare that they have no conflicts of interest. Ethical Approval Statement: We obtained permission to access the files of SEER database. The personal identifying information was not involved in this study so that the informed consent was not required. This study was reviewed and approved by the Medical Ethic Committee of Sir Run Run Shaw hospital affiliated to Medical College of Zhejiang University.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ET发布了新的文献求助10
1秒前
学校不买数据库完成签到,获得积分10
2秒前
5秒前
stay发布了新的文献求助10
5秒前
9秒前
小竹笋完成签到 ,获得积分10
10秒前
wu发布了新的文献求助10
11秒前
vincent完成签到 ,获得积分10
11秒前
zz完成签到,获得积分10
12秒前
野性的半青完成签到,获得积分10
12秒前
Metx完成签到 ,获得积分10
14秒前
14秒前
小悟空的美好年华完成签到 ,获得积分10
15秒前
小白菜加油开完成签到,获得积分20
17秒前
桐桐应助stay采纳,获得10
17秒前
竹筏过海应助科研通管家采纳,获得30
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
甜甜的以筠完成签到 ,获得积分10
21秒前
25秒前
朴素的山蝶完成签到 ,获得积分10
28秒前
想吃芝士荔枝烤鱼完成签到,获得积分10
31秒前
活力的小猫咪完成签到 ,获得积分10
31秒前
36秒前
he完成签到 ,获得积分10
37秒前
凡人丿完成签到 ,获得积分10
37秒前
33Svan完成签到 ,获得积分20
38秒前
39秒前
落后翠柏完成签到 ,获得积分10
41秒前
42秒前
yapo发布了新的文献求助10
43秒前
44秒前
ruby发布了新的文献求助10
46秒前
180霸总完成签到 ,获得积分10
47秒前
wu发布了新的文献求助10
50秒前
彭于晏应助yapo采纳,获得10
50秒前
李崋壹完成签到 ,获得积分10
51秒前
51秒前
xingcheng完成签到,获得积分10
53秒前
hanlixuan完成签到 ,获得积分10
53秒前
WizBLue完成签到,获得积分10
54秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164695
求助须知:如何正确求助?哪些是违规求助? 2815790
关于积分的说明 7910147
捐赠科研通 2475331
什么是DOI,文献DOI怎么找? 1318097
科研通“疑难数据库(出版商)”最低求助积分说明 632002
版权声明 602282