An Artificial Intelligence Model for Predicting the 5-Year Survival Status of Osteosarcoma Patients Based on the SEER Database and XGBoost Algorithm

骨肉瘤 计算机科学 医学 癌症 人工智能 肿瘤科 预测建模 数据库 生存分析 比例危险模型 机器学习 逻辑回归 协变量
作者
Jiuzhou Jiang,Yiyun Wang,Pengchen Qiu,Chenchen Zhao,Bao Qian,Xianfeng Lin,Shunwu Fan
出处
期刊:Social Science Research Network
标识
DOI:10.2139/ssrn.3420374
摘要

Osteosarcoma is the most common bone malignancy, with the highest incidence in children and adolescents. Survival rate prediction is important for improving prognosis and planning therapy. However, there is still no prediction model with a high accuracy rate for osteosarcoma. Therefore, we aimed to construct an artificial intelligence model for predicting the 5-year survival of osteosarcoma patients by using extreme gradient boosting (XGBoost), a large-scale machine-learning algorithm. We identified cases of osteosarcoma in the Surveillance, Epidemiology, and End Results (SEER) Research Database (2004-2014) and excluded substandard samples. The study population was 835 and was divided into the training set (n = 668) and validation set (n = 167). Characteristics selected via survival analyses were used to construct the model. Receiver operating characteristic and decision curve analyses were performed to evaluate the prediction model. Age, primary tumor site, histological grade, extension stage, tumor size, local lymphatic metastasis, distant metastasis, radiation, chemotherapy and surgery were selected as the characteristics to construct the XGBoost model. The accuracy of the prediction model was excellent both in the training set (AUC = 0.977) and the validation set (AUC = 0.911). Decision curve analyses proved the model could be used to support clinical decisions. Two other representative artificial intelligence models (support vector machine and Bayesian network) were also tested and proved inferior to the XGBoost model. XGBoost is an effective algorithm for predicting 5-year survival of osteosarcoma patients. Our prediction model had excellent accuracy and is therefore useful in clinical settings. Funding Statement: This work was supported in part by the National Nature Science Fund of China (81702143, 81772387 and 81472064); the Public Projects of Zhejiang Province (LGF19H060013) and the Natural Science Foundation of Zhejiang Province of China (LQ16C110001). Declaration of Interests: The authors declare that they have no conflicts of interest. Ethical Approval Statement: We obtained permission to access the files of SEER database. The personal identifying information was not involved in this study so that the informed consent was not required. This study was reviewed and approved by the Medical Ethic Committee of Sir Run Run Shaw hospital affiliated to Medical College of Zhejiang University.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Rain发布了新的文献求助10
1秒前
butiflow完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
务实的唇膏完成签到,获得积分10
2秒前
Will完成签到,获得积分10
2秒前
2秒前
Micky完成签到,获得积分10
2秒前
ape发布了新的文献求助10
2秒前
十七发布了新的文献求助10
3秒前
gyt发布了新的文献求助10
3秒前
时尚战斗机完成签到,获得积分10
3秒前
3秒前
华安发布了新的文献求助30
4秒前
4秒前
迟大猫应助dpp采纳,获得10
4秒前
5秒前
astral完成签到,获得积分10
5秒前
科研通AI5应助HJJHJH采纳,获得30
6秒前
Isabel发布了新的文献求助10
6秒前
6秒前
桑姊发布了新的文献求助10
7秒前
7秒前
Cyrus2022完成签到,获得积分10
7秒前
古哉完成签到,获得积分10
7秒前
xiachengcs发布了新的文献求助30
8秒前
炙热芝发布了新的文献求助30
8秒前
Rain完成签到,获得积分10
8秒前
高大的战斗机完成签到,获得积分10
8秒前
26347完成签到 ,获得积分10
8秒前
131343发布了新的文献求助10
8秒前
HZHZ完成签到,获得积分10
8秒前
沈海完成签到,获得积分10
9秒前
9秒前
smartbot发布了新的文献求助20
9秒前
new_vision发布了新的文献求助10
9秒前
英姑应助挽歌采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762