Artificial Intelligence has Similar Performance to Subjective Assessment of Emphysema Severity on Chest CT

医学 放射科 异常 核医学 内科学 精神科
作者
Shadi Ebrahimian,Subba R. Digumarthy,Bernardo C. Bizzo,Andrew N. Primak,Mathis Zimmermann,Mohammad Mahmoud Tarbiah,Mannudeep K. Kalra,Keith J. Dreyer
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (8): 1189-1195 被引量:15
标识
DOI:10.1016/j.acra.2021.09.007
摘要

To compare an artificial intelligence (AI)-based prototype and subjective grading for predicting disease severity in patients with emphysema.Our IRB approved HIPAA-compliant study included 113 adults (71±8 years; 47 females, 66 males) who had both non-contrast chest CT and pulmonary function tests performed within a span of 2 months. The disease severity was classified based on the forced expiratory volume in 1 second (FEV1 as % of predicted) into mild, moderate, and severe. 2 thoracic radiologists (RA), blinded to the clinical and AI results, graded severity of emphysema on a 5-point scale suggested by the Fleischner Society for each lobe. The whole lung scores were derived from the summation of lobar scores. Thin-section CT images were processed with the AI-Rad Companion Chest prototype (Siemens Healthineers) to quantify low attenuation areas (LAA < - 950 HU) in whole lung and each lobe separately. Bronchial abnormality was assessed by both radiologists and a fully automated software (Philips Healthcare).Both AI (AUC of 0.77; 95% CI: 0.68 - 0.85) and RA (AUC: 0.76, 95% CI: 0.65 - 0.84) emphysema quantification could differentiate mild, moderate, and severe disease based on FEV1. There was a strong positive correlation between AI and RA (r = 0.72 - 0.80; p <0.001). The combination of emphysema and bronchial abnormality quantification from radiologists' and AI assessment could differentiate between different severities with AUC of 0.80 - 0.82 and 0.87, respectively.The assessed AI-prototypes can predict the disease severity in patients with emphysema with the same predictive value as the radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hututu发布了新的文献求助10
刚刚
刚刚
1秒前
WH完成签到,获得积分10
1秒前
怡然的便当完成签到,获得积分10
1秒前
1秒前
1秒前
CC发布了新的文献求助10
1秒前
1秒前
JOY完成签到 ,获得积分20
2秒前
华仔应助聪慧的绿柏采纳,获得10
2秒前
魏曼柔完成签到,获得积分10
2秒前
2秒前
灵巧慕凝发布了新的文献求助10
3秒前
魏小鸭完成签到,获得积分20
3秒前
3秒前
4秒前
沙漠大雕发布了新的文献求助10
5秒前
fsw完成签到,获得积分10
6秒前
6秒前
狂野初丹发布了新的文献求助10
7秒前
甜蜜滑板完成签到,获得积分10
7秒前
7秒前
7秒前
jasterna08完成签到,获得积分10
8秒前
陈媛发布了新的文献求助10
8秒前
猪猪hero发布了新的文献求助10
8秒前
amisomeone发布了新的文献求助20
8秒前
功夫熊猫完成签到,获得积分20
9秒前
含蓄半邪完成签到,获得积分10
9秒前
9秒前
pcr163应助ZhangJ采纳,获得50
10秒前
HR112应助霸气的怀寒采纳,获得10
10秒前
12秒前
13秒前
13秒前
niuma发布了新的文献求助10
13秒前
张小敏发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384315
关于积分的说明 10534047
捐赠科研通 3104710
什么是DOI,文献DOI怎么找? 1709789
邀请新用户注册赠送积分活动 823323
科研通“疑难数据库(出版商)”最低求助积分说明 774034