红细胞压积
微循环
血流
医学
血液粘度
血管舒张
灌注
输血
贫血
血流动力学
红细胞
血液流变学
麻醉
内科学
作者
Weiyu Li,Amy G. Tsai,Marcos Intaglietta,Daniel M. Tartakovsky
标识
DOI:10.1152/japplphysiol.00524.2021
摘要
Although some of the cardiovascular responses to changes in hematocrit (Hct) are not fully quantified experimentally, available information is sufficient to build a mathematical model of the consequences of treating anemia by introducing RBCs into the circulation via blood transfusion. We present such a model, which describes how the treatment of normovolemic anemia with blood transfusion impacts oxygen (O2) delivery (DO2, the product of blood O2 content and arterial blood flow) by the microcirculation. Our analysis accounts for the differential response of the endothelium to the wall shear stress (WSS) stimulus, changes in nitric oxide (NO) production due to modification of blood viscosity caused by alterations of both hematocrit (Hct) and cell free layer thickness, as well as for their combined effects on microvascular blood flow and DO2. Our model shows that transfusions of 1- and 2-unit of blood have a minimal effect on DO2 if the microcirculation is unresponsive to the WSS stimulus for NO production that causes vasodilatation increasing blood flow and DO2. Conversely, in a fully WSS responsive organism, blood transfusion significantly enhances blood flow and DO2, because increased viscosity stimulates endothelial NO production causing vasodilatation. This finding suggests that evaluation of a patients' pretransfusion endothelial WSS responsiveness should be beneficial in determining the optimal transfusion requirements for treating patients with anemia.NEW & NOTEWORTHY Transfusion of 1 or 2 units of blood accounts for about 3/4 of the world blood consumption of 119 million units per year, whereas a current world demand deficit is on the order of 100 million units. Therefore, factors supporting the practice of transfusing 1 unit instead of 2 are of interest, given their potential to expand the number of interventions without increasing blood availability. Our mathematical model provides a physiological support for this practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI