Modeling Temporal Patterns with Dilated Convolutions for Time-Series Forecasting

计算机科学 自回归模型 循环神经网络 时间序列 系列(地层学) 航程(航空) 序列(生物学) 人工智能 模式识别(心理学) 算法 人工神经网络 机器学习 数学 古生物学 计量经济学 复合材料 材料科学 生物 遗传学
作者
Yangfan Li,Kenli Li,Cen Chen,Xu Zhou,Zeng Zeng,Keqin Li
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (1): 1-22 被引量:29
标识
DOI:10.1145/3453724
摘要

Time-series forecasting is an important problem across a wide range of domains. Designing accurate and prompt forecasting algorithms is a non-trivial task, as temporal data that arise in real applications often involve both non-linear dynamics and linear dependencies, and always have some mixtures of sequential and periodic patterns, such as daily, weekly repetitions, and so on. At this point, however, most recent deep models often use Recurrent Neural Networks (RNNs) to capture these temporal patterns, which is hard to parallelize and not fast enough for real-world applications especially when a huge amount of user requests are coming. Recently, CNNs have demonstrated significant advantages for sequence modeling tasks over the de-facto RNNs, while providing high computational efficiency due to the inherent parallelism. In this work, we propose HyDCNN, a novel hybrid framework based on fully Dilated CNN for time-series forecasting tasks. The core component in HyDCNN is a proposed hybrid module, in which our proposed position-aware dilated CNNs are utilized to capture the sequential non-linear dynamics and an autoregressive model is leveraged to capture the sequential linear dependencies. To further capture the periodic temporal patterns, a novel hop scheme is introduced in the hybrid module. HyDCNN is then composed of multiple hybrid modules to capture the sequential and periodic patterns. Each of these hybrid modules targets on either the sequential pattern or one kind of periodic patterns. Extensive experiments on five real-world datasets have shown that the proposed HyDCNN is better compared with state-of-the-art baselines and is at least 200% better than RNN baselines. The datasets and source code will be published in Github to facilitate more future work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Winter完成签到,获得积分10
刚刚
bcl完成签到,获得积分10
3秒前
自觉从云发布了新的文献求助30
3秒前
8秒前
馨妈完成签到 ,获得积分20
8秒前
晴空万里完成签到 ,获得积分10
8秒前
8秒前
明天又是美好的一天完成签到 ,获得积分10
8秒前
10秒前
10秒前
饼饼完成签到 ,获得积分10
12秒前
闾丘剑封发布了新的文献求助30
12秒前
慈祥的爆米花完成签到,获得积分10
13秒前
云水雾心发布了新的文献求助10
14秒前
duanhuiyuan发布了新的文献求助10
14秒前
XXXXX完成签到 ,获得积分10
15秒前
hjc641发布了新的文献求助10
15秒前
wanci应助陈婷采纳,获得10
16秒前
franklylyly完成签到,获得积分10
16秒前
18秒前
许水桃完成签到,获得积分10
19秒前
阿南完成签到 ,获得积分10
21秒前
噜噜噜完成签到 ,获得积分10
21秒前
22秒前
一米阳光发布了新的文献求助10
22秒前
陈婷发布了新的文献求助10
27秒前
28秒前
乐乐应助wsy采纳,获得10
28秒前
可以的完成签到,获得积分10
28秒前
王小龙完成签到,获得积分10
29秒前
蓝景轩辕完成签到 ,获得积分10
30秒前
oozawa完成签到 ,获得积分10
31秒前
carnationli完成签到,获得积分20
31秒前
李美玥完成签到 ,获得积分10
31秒前
威武的乌冬面完成签到 ,获得积分10
31秒前
星辰大海应助刘正阳采纳,获得10
32秒前
番茄酱发布了新的文献求助10
33秒前
liao_duoduo完成签到,获得积分10
33秒前
科研通AI6应助lijunliang采纳,获得10
34秒前
杨树完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565231
求助须知:如何正确求助?哪些是违规求助? 4650088
关于积分的说明 14689720
捐赠科研通 4591964
什么是DOI,文献DOI怎么找? 2519415
邀请新用户注册赠送积分活动 1491925
关于科研通互助平台的介绍 1463159