已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling Temporal Patterns with Dilated Convolutions for Time-Series Forecasting

计算机科学 自回归模型 循环神经网络 时间序列 系列(地层学) 航程(航空) 序列(生物学) 人工智能 模式识别(心理学) 算法 人工神经网络 机器学习 数学 古生物学 材料科学 遗传学 复合材料 计量经济学 生物
作者
Yangfan Li,Kenli Li,Cen Chen,Xu Zhou,Zeng Zeng,Keqin Li
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (1): 1-22 被引量:29
标识
DOI:10.1145/3453724
摘要

Time-series forecasting is an important problem across a wide range of domains. Designing accurate and prompt forecasting algorithms is a non-trivial task, as temporal data that arise in real applications often involve both non-linear dynamics and linear dependencies, and always have some mixtures of sequential and periodic patterns, such as daily, weekly repetitions, and so on. At this point, however, most recent deep models often use Recurrent Neural Networks (RNNs) to capture these temporal patterns, which is hard to parallelize and not fast enough for real-world applications especially when a huge amount of user requests are coming. Recently, CNNs have demonstrated significant advantages for sequence modeling tasks over the de-facto RNNs, while providing high computational efficiency due to the inherent parallelism. In this work, we propose HyDCNN, a novel hybrid framework based on fully Dilated CNN for time-series forecasting tasks. The core component in HyDCNN is a proposed hybrid module, in which our proposed position-aware dilated CNNs are utilized to capture the sequential non-linear dynamics and an autoregressive model is leveraged to capture the sequential linear dependencies. To further capture the periodic temporal patterns, a novel hop scheme is introduced in the hybrid module. HyDCNN is then composed of multiple hybrid modules to capture the sequential and periodic patterns. Each of these hybrid modules targets on either the sequential pattern or one kind of periodic patterns. Extensive experiments on five real-world datasets have shown that the proposed HyDCNN is better compared with state-of-the-art baselines and is at least 200% better than RNN baselines. The datasets and source code will be published in Github to facilitate more future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助xixi采纳,获得10
刚刚
zwd完成签到 ,获得积分10
刚刚
hyhyhyhy发布了新的文献求助30
1秒前
Augustines完成签到,获得积分10
3秒前
3秒前
崔诗云完成签到,获得积分10
5秒前
5秒前
555557应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
无花果应助hyhyhyhy采纳,获得10
8秒前
费小曼完成签到,获得积分10
8秒前
9秒前
夜雨声烦发布了新的文献求助10
9秒前
gorgeousgaga完成签到,获得积分10
10秒前
郑蒸日上发布了新的文献求助10
11秒前
SciGPT应助没有蛀牙采纳,获得10
16秒前
修水县1个科研人完成签到 ,获得积分10
17秒前
18秒前
20秒前
bjyx完成签到,获得积分10
22秒前
lianmeiliu完成签到,获得积分10
22秒前
WUHUIWEN完成签到,获得积分10
24秒前
朝气完成签到,获得积分10
24秒前
bjyx发布了新的文献求助10
24秒前
26秒前
我真的要好好学习完成签到 ,获得积分10
27秒前
任海军完成签到,获得积分20
28秒前
29秒前
没有蛀牙发布了新的文献求助10
31秒前
领导范儿应助辣椒采纳,获得10
32秒前
任海军发布了新的文献求助30
32秒前
59完成签到 ,获得积分10
33秒前
34秒前
佳期如梦完成签到 ,获得积分10
34秒前
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994701
求助须知:如何正确求助?哪些是违规求助? 3534936
关于积分的说明 11266877
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809749