Modeling Temporal Patterns with Dilated Convolutions for Time-Series Forecasting

计算机科学 自回归模型 循环神经网络 时间序列 系列(地层学) 航程(航空) 序列(生物学) 人工智能 模式识别(心理学) 算法 人工神经网络 机器学习 数学 古生物学 材料科学 遗传学 复合材料 计量经济学 生物
作者
Yangfan Li,Kenli Li,Cen Chen,Xu Zhou,Zeng Zeng,Keqin Li
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (1): 1-22 被引量:29
标识
DOI:10.1145/3453724
摘要

Time-series forecasting is an important problem across a wide range of domains. Designing accurate and prompt forecasting algorithms is a non-trivial task, as temporal data that arise in real applications often involve both non-linear dynamics and linear dependencies, and always have some mixtures of sequential and periodic patterns, such as daily, weekly repetitions, and so on. At this point, however, most recent deep models often use Recurrent Neural Networks (RNNs) to capture these temporal patterns, which is hard to parallelize and not fast enough for real-world applications especially when a huge amount of user requests are coming. Recently, CNNs have demonstrated significant advantages for sequence modeling tasks over the de-facto RNNs, while providing high computational efficiency due to the inherent parallelism. In this work, we propose HyDCNN, a novel hybrid framework based on fully Dilated CNN for time-series forecasting tasks. The core component in HyDCNN is a proposed hybrid module, in which our proposed position-aware dilated CNNs are utilized to capture the sequential non-linear dynamics and an autoregressive model is leveraged to capture the sequential linear dependencies. To further capture the periodic temporal patterns, a novel hop scheme is introduced in the hybrid module. HyDCNN is then composed of multiple hybrid modules to capture the sequential and periodic patterns. Each of these hybrid modules targets on either the sequential pattern or one kind of periodic patterns. Extensive experiments on five real-world datasets have shown that the proposed HyDCNN is better compared with state-of-the-art baselines and is at least 200% better than RNN baselines. The datasets and source code will be published in Github to facilitate more future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霜之哀伤完成签到,获得积分10
1秒前
1秒前
1206完成签到,获得积分20
1秒前
孙一一完成签到 ,获得积分10
2秒前
科研通AI6应助豆豆采纳,获得10
2秒前
2秒前
噜噜噜发布了新的文献求助10
2秒前
小马发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
谨慎初曼发布了新的文献求助10
4秒前
jndx2010发布了新的文献求助10
4秒前
4秒前
冷傲海完成签到,获得积分10
5秒前
文静新烟发布了新的文献求助10
6秒前
深情安青应助v321采纳,获得10
6秒前
ly发布了新的文献求助10
6秒前
6秒前
bwod发布了新的文献求助10
7秒前
Lsmile发布了新的文献求助10
7秒前
赘婿应助peng采纳,获得10
7秒前
FaiRe发布了新的文献求助10
7秒前
7秒前
徐枘完成签到,获得积分10
8秒前
LD发布了新的文献求助10
8秒前
8秒前
SciGPT应助下次见采纳,获得10
8秒前
Gzh_NJ完成签到,获得积分10
8秒前
ll完成签到,获得积分10
8秒前
wenwen完成签到,获得积分10
9秒前
小6发布了新的文献求助30
9秒前
Beverly发布了新的文献求助10
9秒前
老神在在完成签到,获得积分10
10秒前
11秒前
11秒前
飘逸之玉完成签到,获得积分10
12秒前
12秒前
12秒前
Liz完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352387
求助须知:如何正确求助?哪些是违规求助? 4485204
关于积分的说明 13962313
捐赠科研通 4385188
什么是DOI,文献DOI怎么找? 2409321
邀请新用户注册赠送积分活动 1401751
关于科研通互助平台的介绍 1375322