Modeling Temporal Patterns with Dilated Convolutions for Time-Series Forecasting

计算机科学 自回归模型 循环神经网络 时间序列 系列(地层学) 航程(航空) 序列(生物学) 人工智能 模式识别(心理学) 算法 人工神经网络 机器学习 数学 古生物学 计量经济学 复合材料 材料科学 生物 遗传学
作者
Yangfan Li,Kenli Li,Cen Chen,Xu Zhou,Zeng Zeng,Keqin Li
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (1): 1-22 被引量:29
标识
DOI:10.1145/3453724
摘要

Time-series forecasting is an important problem across a wide range of domains. Designing accurate and prompt forecasting algorithms is a non-trivial task, as temporal data that arise in real applications often involve both non-linear dynamics and linear dependencies, and always have some mixtures of sequential and periodic patterns, such as daily, weekly repetitions, and so on. At this point, however, most recent deep models often use Recurrent Neural Networks (RNNs) to capture these temporal patterns, which is hard to parallelize and not fast enough for real-world applications especially when a huge amount of user requests are coming. Recently, CNNs have demonstrated significant advantages for sequence modeling tasks over the de-facto RNNs, while providing high computational efficiency due to the inherent parallelism. In this work, we propose HyDCNN, a novel hybrid framework based on fully Dilated CNN for time-series forecasting tasks. The core component in HyDCNN is a proposed hybrid module, in which our proposed position-aware dilated CNNs are utilized to capture the sequential non-linear dynamics and an autoregressive model is leveraged to capture the sequential linear dependencies. To further capture the periodic temporal patterns, a novel hop scheme is introduced in the hybrid module. HyDCNN is then composed of multiple hybrid modules to capture the sequential and periodic patterns. Each of these hybrid modules targets on either the sequential pattern or one kind of periodic patterns. Extensive experiments on five real-world datasets have shown that the proposed HyDCNN is better compared with state-of-the-art baselines and is at least 200% better than RNN baselines. The datasets and source code will be published in Github to facilitate more future work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fdawn完成签到,获得积分10
刚刚
南浔发布了新的文献求助10
1秒前
niu应助伶俐的不尤采纳,获得10
1秒前
自信书文完成签到 ,获得积分10
2秒前
2秒前
厚德载物完成签到 ,获得积分10
2秒前
lulujiang完成签到 ,获得积分10
3秒前
Akim应助体贴的无色采纳,获得10
3秒前
一个刚刚完成签到,获得积分10
3秒前
吴淑明发布了新的文献求助10
3秒前
丘比特应助xzy采纳,获得10
3秒前
wanci应助呆萌菲音采纳,获得10
4秒前
Bruce完成签到,获得积分10
4秒前
MX001完成签到,获得积分10
4秒前
5秒前
大个应助普鲁卡因采纳,获得10
5秒前
Hello应助nezhaalicia采纳,获得10
5秒前
5秒前
苏silence发布了新的文献求助10
6秒前
7秒前
肌肉猛男完成签到,获得积分10
7秒前
领导范儿应助memorise采纳,获得30
7秒前
SciGPT应助龙江游侠采纳,获得10
7秒前
火星上的西牛完成签到,获得积分10
7秒前
qwdqwd完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
明理的蜗牛完成签到,获得积分10
9秒前
pharrah完成签到,获得积分10
9秒前
Qianyun完成签到,获得积分10
9秒前
9秒前
吴淑明完成签到,获得积分10
10秒前
clara完成签到,获得积分10
10秒前
喵喵发布了新的文献求助10
10秒前
10秒前
kosmos完成签到,获得积分10
10秒前
里苏特完成签到,获得积分10
10秒前
10秒前
qll完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017