Modeling Temporal Patterns with Dilated Convolutions for Time-Series Forecasting

计算机科学 自回归模型 循环神经网络 时间序列 系列(地层学) 航程(航空) 序列(生物学) 人工智能 模式识别(心理学) 算法 人工神经网络 机器学习 数学 古生物学 材料科学 遗传学 复合材料 计量经济学 生物
作者
Yangfan Li,Kenli Li,Cen Chen,Xu Zhou,Zeng Zeng,Keqin Li
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (1): 1-22 被引量:29
标识
DOI:10.1145/3453724
摘要

Time-series forecasting is an important problem across a wide range of domains. Designing accurate and prompt forecasting algorithms is a non-trivial task, as temporal data that arise in real applications often involve both non-linear dynamics and linear dependencies, and always have some mixtures of sequential and periodic patterns, such as daily, weekly repetitions, and so on. At this point, however, most recent deep models often use Recurrent Neural Networks (RNNs) to capture these temporal patterns, which is hard to parallelize and not fast enough for real-world applications especially when a huge amount of user requests are coming. Recently, CNNs have demonstrated significant advantages for sequence modeling tasks over the de-facto RNNs, while providing high computational efficiency due to the inherent parallelism. In this work, we propose HyDCNN, a novel hybrid framework based on fully Dilated CNN for time-series forecasting tasks. The core component in HyDCNN is a proposed hybrid module, in which our proposed position-aware dilated CNNs are utilized to capture the sequential non-linear dynamics and an autoregressive model is leveraged to capture the sequential linear dependencies. To further capture the periodic temporal patterns, a novel hop scheme is introduced in the hybrid module. HyDCNN is then composed of multiple hybrid modules to capture the sequential and periodic patterns. Each of these hybrid modules targets on either the sequential pattern or one kind of periodic patterns. Extensive experiments on five real-world datasets have shown that the proposed HyDCNN is better compared with state-of-the-art baselines and is at least 200% better than RNN baselines. The datasets and source code will be published in Github to facilitate more future work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
激动的鹰完成签到,获得积分10
刚刚
1秒前
2秒前
思源应助苹果向露采纳,获得10
3秒前
3秒前
李健应助happy采纳,获得10
3秒前
文献小白完成签到 ,获得积分10
4秒前
浮游应助激动的访波采纳,获得10
4秒前
bkagyin应助激动的访波采纳,获得10
4秒前
5秒前
可闲发布了新的文献求助10
6秒前
7秒前
行寂静行完成签到 ,获得积分10
8秒前
自觉语琴完成签到 ,获得积分10
9秒前
NMC发布了新的文献求助10
10秒前
共享精神应助小宇OvO采纳,获得10
11秒前
机灵毛豆完成签到 ,获得积分10
11秒前
刘清河发布了新的文献求助10
11秒前
小禾完成签到 ,获得积分10
12秒前
13秒前
zjy完成签到,获得积分10
13秒前
13秒前
14秒前
齐齐完成签到,获得积分20
14秒前
shr完成签到,获得积分10
15秒前
奥拉同学完成签到,获得积分10
16秒前
易水完成签到 ,获得积分10
16秒前
happy发布了新的文献求助10
16秒前
可闲完成签到,获得积分20
17秒前
19秒前
柚柚子完成签到,获得积分10
22秒前
精油完成签到,获得积分10
22秒前
24秒前
mr完成签到 ,获得积分10
25秒前
中论文呢发布了新的文献求助10
26秒前
26秒前
26秒前
感动的莞发布了新的文献求助10
27秒前
糜灭龙完成签到,获得积分10
30秒前
科研通AI6应助tong采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499097
求助须知:如何正确求助?哪些是违规求助? 4596115
关于积分的说明 14452329
捐赠科研通 4529231
什么是DOI,文献DOI怎么找? 2481872
邀请新用户注册赠送积分活动 1465897
关于科研通互助平台的介绍 1438802