Modeling Temporal Patterns with Dilated Convolutions for Time-Series Forecasting

计算机科学 自回归模型 循环神经网络 时间序列 系列(地层学) 航程(航空) 序列(生物学) 人工智能 模式识别(心理学) 算法 人工神经网络 机器学习 数学 古生物学 材料科学 遗传学 复合材料 计量经济学 生物
作者
Yangfan Li,Kenli Li,Cen Chen,Xu Zhou,Zeng Zeng,Keqin Li
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (1): 1-22 被引量:29
标识
DOI:10.1145/3453724
摘要

Time-series forecasting is an important problem across a wide range of domains. Designing accurate and prompt forecasting algorithms is a non-trivial task, as temporal data that arise in real applications often involve both non-linear dynamics and linear dependencies, and always have some mixtures of sequential and periodic patterns, such as daily, weekly repetitions, and so on. At this point, however, most recent deep models often use Recurrent Neural Networks (RNNs) to capture these temporal patterns, which is hard to parallelize and not fast enough for real-world applications especially when a huge amount of user requests are coming. Recently, CNNs have demonstrated significant advantages for sequence modeling tasks over the de-facto RNNs, while providing high computational efficiency due to the inherent parallelism. In this work, we propose HyDCNN, a novel hybrid framework based on fully Dilated CNN for time-series forecasting tasks. The core component in HyDCNN is a proposed hybrid module, in which our proposed position-aware dilated CNNs are utilized to capture the sequential non-linear dynamics and an autoregressive model is leveraged to capture the sequential linear dependencies. To further capture the periodic temporal patterns, a novel hop scheme is introduced in the hybrid module. HyDCNN is then composed of multiple hybrid modules to capture the sequential and periodic patterns. Each of these hybrid modules targets on either the sequential pattern or one kind of periodic patterns. Extensive experiments on five real-world datasets have shown that the proposed HyDCNN is better compared with state-of-the-art baselines and is at least 200% better than RNN baselines. The datasets and source code will be published in Github to facilitate more future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mumu完成签到,获得积分10
2秒前
2秒前
2秒前
Orange应助MM采纳,获得10
2秒前
3秒前
江湖护卫舰应助cc采纳,获得30
3秒前
领导范儿应助yfh1997采纳,获得10
3秒前
YY发布了新的文献求助10
3秒前
hakunamatata完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
6秒前
6秒前
含蓄的小熊猫完成签到 ,获得积分10
6秒前
执着的诗桃完成签到,获得积分10
7秒前
流年发布了新的文献求助10
7秒前
诚心梦之完成签到,获得积分10
7秒前
8秒前
8秒前
NexusExplorer应助Luhh采纳,获得10
9秒前
眼睛大樱桃完成签到,获得积分10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
布丁发布了新的文献求助10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
不倒翁发布了新的文献求助10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
周二完成签到,获得积分10
12秒前
12秒前
Azusa完成签到,获得积分10
12秒前
佐哥发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941797
求助须知:如何正确求助?哪些是违规求助? 4207663
关于积分的说明 13078817
捐赠科研通 3986706
什么是DOI,文献DOI怎么找? 2182648
邀请新用户注册赠送积分活动 1198336
关于科研通互助平台的介绍 1110591