Modeling Temporal Patterns with Dilated Convolutions for Time-Series Forecasting

计算机科学 自回归模型 循环神经网络 时间序列 系列(地层学) 航程(航空) 序列(生物学) 人工智能 模式识别(心理学) 算法 人工神经网络 机器学习 数学 古生物学 计量经济学 复合材料 材料科学 生物 遗传学
作者
Yangfan Li,Kenli Li,Cen Chen,Xu Zhou,Zeng Zeng,Keqin Li
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (1): 1-22 被引量:29
标识
DOI:10.1145/3453724
摘要

Time-series forecasting is an important problem across a wide range of domains. Designing accurate and prompt forecasting algorithms is a non-trivial task, as temporal data that arise in real applications often involve both non-linear dynamics and linear dependencies, and always have some mixtures of sequential and periodic patterns, such as daily, weekly repetitions, and so on. At this point, however, most recent deep models often use Recurrent Neural Networks (RNNs) to capture these temporal patterns, which is hard to parallelize and not fast enough for real-world applications especially when a huge amount of user requests are coming. Recently, CNNs have demonstrated significant advantages for sequence modeling tasks over the de-facto RNNs, while providing high computational efficiency due to the inherent parallelism. In this work, we propose HyDCNN, a novel hybrid framework based on fully Dilated CNN for time-series forecasting tasks. The core component in HyDCNN is a proposed hybrid module, in which our proposed position-aware dilated CNNs are utilized to capture the sequential non-linear dynamics and an autoregressive model is leveraged to capture the sequential linear dependencies. To further capture the periodic temporal patterns, a novel hop scheme is introduced in the hybrid module. HyDCNN is then composed of multiple hybrid modules to capture the sequential and periodic patterns. Each of these hybrid modules targets on either the sequential pattern or one kind of periodic patterns. Extensive experiments on five real-world datasets have shown that the proposed HyDCNN is better compared with state-of-the-art baselines and is at least 200% better than RNN baselines. The datasets and source code will be published in Github to facilitate more future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
紫苏完成签到,获得积分10
2秒前
伊饭完成签到 ,获得积分10
2秒前
Mrwang完成签到,获得积分10
3秒前
Lucas应助月夕采纳,获得10
3秒前
心心哈发布了新的文献求助10
4秒前
沙糖桔完成签到,获得积分10
4秒前
感动的醉波完成签到,获得积分10
5秒前
5秒前
jxp完成签到,获得积分10
6秒前
7秒前
图图发布了新的文献求助20
7秒前
justdoit完成签到,获得积分10
7秒前
8秒前
田様应助小张爱学习采纳,获得10
8秒前
安卉完成签到 ,获得积分10
8秒前
戴衡霞完成签到,获得积分10
8秒前
啦啦啦完成签到,获得积分10
9秒前
情怀应助网安真难T_T采纳,获得10
10秒前
qyb完成签到,获得积分20
10秒前
赘婿应助yu采纳,获得10
12秒前
无花果应助你是我的唯一采纳,获得10
12秒前
春华秋实发布了新的文献求助10
13秒前
吴雨发布了新的文献求助10
13秒前
13秒前
萌芽完成签到 ,获得积分10
13秒前
14秒前
chen发布了新的文献求助10
14秒前
张秋贤完成签到,获得积分10
14秒前
lkc发布了新的文献求助10
16秒前
贝塔发布了新的文献求助10
18秒前
所所应助chaos采纳,获得20
18秒前
JamesPei应助月夕采纳,获得10
18秒前
19秒前
19秒前
22秒前
22秒前
FashionBoy应助馒头采纳,获得10
22秒前
gy完成签到 ,获得积分20
23秒前
23秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
中国百部新生物碱的化学研究 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3176694
求助须知:如何正确求助?哪些是违规求助? 2828018
关于积分的说明 7964322
捐赠科研通 2488898
什么是DOI,文献DOI怎么找? 1326743
科研通“疑难数据库(出版商)”最低求助积分说明 635035
版权声明 602837