Modeling Temporal Patterns with Dilated Convolutions for Time-Series Forecasting

计算机科学 自回归模型 循环神经网络 时间序列 系列(地层学) 航程(航空) 序列(生物学) 人工智能 模式识别(心理学) 算法 人工神经网络 机器学习 数学 古生物学 计量经济学 复合材料 材料科学 生物 遗传学
作者
Yangfan Li,Kenli Li,Cen Chen,Xu Zhou,Zeng Zeng,Keqin Li
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (1): 1-22 被引量:29
标识
DOI:10.1145/3453724
摘要

Time-series forecasting is an important problem across a wide range of domains. Designing accurate and prompt forecasting algorithms is a non-trivial task, as temporal data that arise in real applications often involve both non-linear dynamics and linear dependencies, and always have some mixtures of sequential and periodic patterns, such as daily, weekly repetitions, and so on. At this point, however, most recent deep models often use Recurrent Neural Networks (RNNs) to capture these temporal patterns, which is hard to parallelize and not fast enough for real-world applications especially when a huge amount of user requests are coming. Recently, CNNs have demonstrated significant advantages for sequence modeling tasks over the de-facto RNNs, while providing high computational efficiency due to the inherent parallelism. In this work, we propose HyDCNN, a novel hybrid framework based on fully Dilated CNN for time-series forecasting tasks. The core component in HyDCNN is a proposed hybrid module, in which our proposed position-aware dilated CNNs are utilized to capture the sequential non-linear dynamics and an autoregressive model is leveraged to capture the sequential linear dependencies. To further capture the periodic temporal patterns, a novel hop scheme is introduced in the hybrid module. HyDCNN is then composed of multiple hybrid modules to capture the sequential and periodic patterns. Each of these hybrid modules targets on either the sequential pattern or one kind of periodic patterns. Extensive experiments on five real-world datasets have shown that the proposed HyDCNN is better compared with state-of-the-art baselines and is at least 200% better than RNN baselines. The datasets and source code will be published in Github to facilitate more future work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
思源应助3900采纳,获得10
刚刚
zzdd完成签到,获得积分10
刚刚
1秒前
1秒前
深情安青应助静好采纳,获得10
2秒前
Linlin完成签到,获得积分10
2秒前
东白湖的无奈完成签到,获得积分10
2秒前
厚朴大师完成签到,获得积分10
2秒前
2秒前
迪迦发布了新的文献求助10
2秒前
wuran发布了新的文献求助10
2秒前
长京发布了新的文献求助10
2秒前
Snoopy完成签到,获得积分10
3秒前
3秒前
盛清让完成签到,获得积分10
4秒前
4秒前
小可爱完成签到,获得积分10
4秒前
4秒前
顾矜应助自觉士萧采纳,获得10
5秒前
晨曦完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
细雨清心完成签到,获得积分10
6秒前
汀汀发布了新的文献求助10
8秒前
现代宛丝完成签到,获得积分20
8秒前
JamesPei应助鎏芒兔子采纳,获得10
8秒前
8秒前
FashionBoy应助3djacklee采纳,获得10
8秒前
梁家孟完成签到,获得积分10
9秒前
静好完成签到,获得积分10
9秒前
9秒前
科研小趴菜完成签到,获得积分10
9秒前
10秒前
SU15964707813发布了新的文献求助10
11秒前
元66666完成签到 ,获得积分10
11秒前
慕青应助徐志豪采纳,获得10
11秒前
11秒前
Robin完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629618
求助须知:如何正确求助?哪些是违规求助? 4720333
关于积分的说明 14970297
捐赠科研通 4787673
什么是DOI,文献DOI怎么找? 2556435
邀请新用户注册赠送积分活动 1517561
关于科研通互助平台的介绍 1478251