Fine Building Segmentation in High-Resolution SAR Images Via Selective Pyramid Dilated Network

计算机科学 人工智能 合成孔径雷达 分割 计算机视觉 棱锥(几何) 特征提取 图像分割 特征(语言学) 卷积神经网络 深度学习 模式识别(心理学) 语言学 光学 物理 哲学
作者
Hao Jing,Xian Sun,Zhirui Wang,Kaiqiang Chen,Wenhui Diao,Kun Fu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:14: 6608-6623 被引量:29
标识
DOI:10.1109/jstars.2021.3076085
摘要

The building extraction from synthetic aperture radar (SAR) images has always been a challenging research topic. Recently, the deep convolution neural network brings excellent improvements in SAR segmentation. The fully convolutional network and other variants are widely transferred to the SAR studies because of their high precision in optical images. They are still limited by their processing in terms of the geometric distortion of buildings, the variability of building structures, and scattering interference between adjacent targets in the SAR images. In this article, a unified framework called selective spatial pyramid dilated (SSPD) network is proposed for the fine building segmentation in SAR images. First, we propose a novel encoder–decoder structure for the fine building feature reconstruction. The enhanced encoder and the dual-stage decoder, composed of the CBM and the SSPD module, extract and recover the crucial multiscale information better. Second, we design the multilayer SSPD module based on the selective spatial attention. The multiscale building information with different attention on multiple branches is combined, optimized, and adaptively selected for adaptive filtering and extracting features of complex multiscale building targets in SAR images. Third, according to the building features and SAR imaging mechanism, a new loss function called L-shape weighting loss (LWloss) is proposed to heighten the attention on the L-shape footprint characteristics of the buildings and reduce the missing detection of line buildings. Besides, LWloss can also alleviate the class imbalance problem in the optimization stage. Finally, the experiments on a large-scene SAR image dataset demonstrate the effectiveness of the proposed method and verify its superiority over other approaches, such as the region-based Markov random field, U-net, and DeepLabv3+.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝绝发布了新的文献求助10
1秒前
zrs发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
弗一昂发布了新的文献求助10
3秒前
5秒前
AZX加油完成签到,获得积分10
5秒前
我是老大应助nan采纳,获得10
5秒前
6秒前
vivianzhang发布了新的文献求助10
6秒前
7秒前
传奇3应助zx采纳,获得10
7秒前
科目三应助蓝绝采纳,获得10
8秒前
张时婕发布了新的文献求助10
9秒前
自信的眉毛完成签到,获得积分10
9秒前
陈炜smile完成签到,获得积分10
10秒前
凭栏听雨发布了新的文献求助10
11秒前
superxiao举报hx求助涉嫌违规
11秒前
VVV完成签到 ,获得积分10
11秒前
wang完成签到,获得积分10
12秒前
And_so完成签到,获得积分10
12秒前
12秒前
健壮的如松完成签到,获得积分20
12秒前
兰贵人发布了新的文献求助10
12秒前
12秒前
keyantong完成签到,获得积分10
13秒前
14秒前
14秒前
沃野千里完成签到,获得积分10
14秒前
今后应助nemo采纳,获得10
15秒前
17秒前
1111111111111发布了新的文献求助10
17秒前
psj完成签到,获得积分10
18秒前
mito给mito的求助进行了留言
18秒前
昏睡的笑南完成签到,获得积分10
18秒前
虚拟的泥猴桃完成签到 ,获得积分10
18秒前
1234567完成签到,获得积分10
18秒前
Lucas应助大林采纳,获得10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168119
求助须知:如何正确求助?哪些是违规求助? 2819492
关于积分的说明 7926815
捐赠科研通 2479378
什么是DOI,文献DOI怎么找? 1320762
科研通“疑难数据库(出版商)”最低求助积分说明 632907
版权声明 602458