Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments

人工智能 机器学习 卷积神经网络 计算机科学 支持向量机 深度学习 感知器 自动化 随机森林 特征提取 人工神经网络 工程类 机械工程
作者
Muhammad Hammad Saleem,Johan Potgieter,Khalid Mahmood Arif
出处
期刊:Precision Agriculture [Springer Nature]
卷期号:22 (6): 2053-2091 被引量:268
标识
DOI:10.1007/s11119-021-09806-x
摘要

Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the advancements in machine learning (ML) concepts, significant improvements have been observed in agricultural tasks. The ability of automatic feature extraction creates an adaptive nature in deep learning (DL), specifically convolutional neural networks to achieve human-level accuracy in various agricultural applications, prominent among which are plant disease detection and classification, weed/crop discrimination, fruit counting, land cover classification, and crop/plant recognition. This review presents the performance of recent uses in agricultural robots by the implementation of ML and DL algorithms/architectures during the last decade. Performance plots are drawn to study the effectiveness of deep learning over traditional machine learning models for certain agricultural operations. The analysis of prominent studies highlighted that the DL-based models, like RCNN (Region-based Convolutional Neural Network), achieve a higher plant disease/pest detection rate (82.51%) than the well-known ML algorithms, including Multi-Layer Perceptron (64.9%) and K-nearest Neighbour (63.76%). The famous DL architecture named ResNet-18 attained more accurate Area Under the Curve (94.84%), and outperformed ML-based techniques, including Random Forest (RF) (70.16%) and Support Vector Machine (SVM) (60.6%), for crop/weed discrimination. Another DL model called FCN (Fully Convolutional Networks) recorded higher accuracy (83.9%) than SVM (67.6%) and RF (65.6%) algorithms for the classification of agricultural land covers. Finally, some important research gaps from the previous studies and innovative future directions are also noted to help propel automation in agriculture up to the next level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草木发布了新的文献求助10
刚刚
刚刚
Much完成签到 ,获得积分10
3秒前
凡华完成签到 ,获得积分10
5秒前
奋进中的科研小菜鸟完成签到,获得积分10
6秒前
9秒前
星空完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
14秒前
巧克力完成签到 ,获得积分10
14秒前
HU完成签到,获得积分10
15秒前
垣味栗子酱完成签到,获得积分20
16秒前
胖胖玩啊玩完成签到 ,获得积分10
18秒前
Tammy完成签到,获得积分10
18秒前
阿伟完成签到,获得积分10
20秒前
无极微光应助白华苍松采纳,获得20
21秒前
酷酷的安柏完成签到 ,获得积分10
22秒前
23秒前
lovekobe完成签到 ,获得积分10
23秒前
鲁卓林完成签到,获得积分10
23秒前
甜美傲蕾完成签到,获得积分10
24秒前
24秒前
yunt完成签到 ,获得积分10
26秒前
小高完成签到 ,获得积分10
27秒前
kyros完成签到,获得积分10
28秒前
Java完成签到,获得积分10
28秒前
老实的黑米完成签到 ,获得积分10
29秒前
亲爱的桃乐茜完成签到 ,获得积分10
29秒前
WW完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
七yy完成签到 ,获得积分10
32秒前
甜蜜冷风完成签到,获得积分10
34秒前
李思超完成签到 ,获得积分10
34秒前
健壮的凝冬完成签到 ,获得积分10
35秒前
求真完成签到,获得积分10
36秒前
38秒前
浮游应助草木采纳,获得10
38秒前
白夜完成签到 ,获得积分10
38秒前
38秒前
爆米花完成签到,获得积分10
40秒前
40秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590