Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments

人工智能 机器学习 卷积神经网络 计算机科学 支持向量机 深度学习 感知器 自动化 随机森林 特征提取 人工神经网络 工程类 机械工程
作者
Muhammad Hammad Saleem,Johan Potgieter,Khalid Mahmood Arif
出处
期刊:Precision Agriculture [Springer Nature]
卷期号:22 (6): 2053-2091 被引量:152
标识
DOI:10.1007/s11119-021-09806-x
摘要

Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the advancements in machine learning (ML) concepts, significant improvements have been observed in agricultural tasks. The ability of automatic feature extraction creates an adaptive nature in deep learning (DL), specifically convolutional neural networks to achieve human-level accuracy in various agricultural applications, prominent among which are plant disease detection and classification, weed/crop discrimination, fruit counting, land cover classification, and crop/plant recognition. This review presents the performance of recent uses in agricultural robots by the implementation of ML and DL algorithms/architectures during the last decade. Performance plots are drawn to study the effectiveness of deep learning over traditional machine learning models for certain agricultural operations. The analysis of prominent studies highlighted that the DL-based models, like RCNN (Region-based Convolutional Neural Network), achieve a higher plant disease/pest detection rate (82.51%) than the well-known ML algorithms, including Multi-Layer Perceptron (64.9%) and K-nearest Neighbour (63.76%). The famous DL architecture named ResNet-18 attained more accurate Area Under the Curve (94.84%), and outperformed ML-based techniques, including Random Forest (RF) (70.16%) and Support Vector Machine (SVM) (60.6%), for crop/weed discrimination. Another DL model called FCN (Fully Convolutional Networks) recorded higher accuracy (83.9%) than SVM (67.6%) and RF (65.6%) algorithms for the classification of agricultural land covers. Finally, some important research gaps from the previous studies and innovative future directions are also noted to help propel automation in agriculture up to the next level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
a1oft发布了新的文献求助10
1秒前
觅桃乌龙完成签到,获得积分10
1秒前
2秒前
melodyezi发布了新的文献求助10
3秒前
3秒前
FFFFFFF应助柚子采纳,获得10
3秒前
9℃发布了新的文献求助10
3秒前
MailkMonk发布了新的文献求助10
3秒前
ZQ完成签到,获得积分10
3秒前
3秒前
wcy发布了新的文献求助10
4秒前
4秒前
尹博士完成签到,获得积分10
4秒前
迟大猫应助周士乐采纳,获得10
5秒前
追寻的筝发布了新的文献求助10
5秒前
喜洋洋发布了新的文献求助10
5秒前
NANA完成签到,获得积分10
5秒前
乐乐应助协和_子鱼采纳,获得10
5秒前
淇淇完成签到,获得积分10
6秒前
6秒前
luuuuuing完成签到,获得积分10
6秒前
沉静的迎荷完成签到,获得积分10
7秒前
天天快乐应助BreezyGallery采纳,获得10
8秒前
8秒前
8秒前
FashionBoy应助MailkMonk采纳,获得10
9秒前
clm发布了新的文献求助10
10秒前
逢强必赢完成签到,获得积分10
10秒前
科研通AI2S应助开朗的慕儿采纳,获得10
10秒前
10秒前
蒋若风发布了新的文献求助10
10秒前
三番又六次完成签到 ,获得积分10
11秒前
纷花雨发布了新的文献求助10
11秒前
友好的以旋完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
小赞芽完成签到,获得积分10
12秒前
LUMOS完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759