Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments

人工智能 机器学习 卷积神经网络 计算机科学 支持向量机 深度学习 感知器 自动化 随机森林 特征提取 人工神经网络 工程类 机械工程
作者
Muhammad Hammad Saleem,Johan Potgieter,Khalid Mahmood Arif
出处
期刊:Precision Agriculture [Springer Science+Business Media]
卷期号:22 (6): 2053-2091 被引量:268
标识
DOI:10.1007/s11119-021-09806-x
摘要

Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the advancements in machine learning (ML) concepts, significant improvements have been observed in agricultural tasks. The ability of automatic feature extraction creates an adaptive nature in deep learning (DL), specifically convolutional neural networks to achieve human-level accuracy in various agricultural applications, prominent among which are plant disease detection and classification, weed/crop discrimination, fruit counting, land cover classification, and crop/plant recognition. This review presents the performance of recent uses in agricultural robots by the implementation of ML and DL algorithms/architectures during the last decade. Performance plots are drawn to study the effectiveness of deep learning over traditional machine learning models for certain agricultural operations. The analysis of prominent studies highlighted that the DL-based models, like RCNN (Region-based Convolutional Neural Network), achieve a higher plant disease/pest detection rate (82.51%) than the well-known ML algorithms, including Multi-Layer Perceptron (64.9%) and K-nearest Neighbour (63.76%). The famous DL architecture named ResNet-18 attained more accurate Area Under the Curve (94.84%), and outperformed ML-based techniques, including Random Forest (RF) (70.16%) and Support Vector Machine (SVM) (60.6%), for crop/weed discrimination. Another DL model called FCN (Fully Convolutional Networks) recorded higher accuracy (83.9%) than SVM (67.6%) and RF (65.6%) algorithms for the classification of agricultural land covers. Finally, some important research gaps from the previous studies and innovative future directions are also noted to help propel automation in agriculture up to the next level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪冷之关注了科研通微信公众号
1秒前
perfumei完成签到,获得积分10
1秒前
罗大大发布了新的文献求助10
1秒前
研友_VZG7GZ应助liuuuuu采纳,获得10
2秒前
2秒前
雨齐完成签到,获得积分10
2秒前
李明泰完成签到,获得积分10
4秒前
酷波er应助yangjun采纳,获得10
4秒前
4秒前
鸡蛋完成签到 ,获得积分10
5秒前
zhou123432完成签到,获得积分20
5秒前
杜萌萌完成签到,获得积分10
6秒前
李健应助十一嘞采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
zcl应助科研通管家采纳,获得20
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
浮生若梦应助科研通管家采纳,获得10
8秒前
浮生若梦应助科研通管家采纳,获得10
8秒前
浮生若梦应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得30
8秒前
9秒前
善学以致用应助康康采纳,获得10
9秒前
王欣茹发布了新的文献求助10
9秒前
海绵宝宝发布了新的文献求助10
10秒前
11秒前
风中黎昕完成签到 ,获得积分10
12秒前
12秒前
12秒前
zhongying发布了新的文献求助10
13秒前
Dr_JennyZ完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262687
求助须知:如何正确求助?哪些是违规求助? 4423535
关于积分的说明 13770052
捐赠科研通 4298274
什么是DOI,文献DOI怎么找? 2358345
邀请新用户注册赠送积分活动 1354694
关于科研通互助平台的介绍 1315914