Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments

人工智能 机器学习 卷积神经网络 计算机科学 支持向量机 深度学习 感知器 自动化 随机森林 特征提取 人工神经网络 工程类 机械工程
作者
Muhammad Hammad Saleem,Johan Potgieter,Khalid Mahmood Arif
出处
期刊:Precision Agriculture [Springer Science+Business Media]
卷期号:22 (6): 2053-2091 被引量:268
标识
DOI:10.1007/s11119-021-09806-x
摘要

Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the advancements in machine learning (ML) concepts, significant improvements have been observed in agricultural tasks. The ability of automatic feature extraction creates an adaptive nature in deep learning (DL), specifically convolutional neural networks to achieve human-level accuracy in various agricultural applications, prominent among which are plant disease detection and classification, weed/crop discrimination, fruit counting, land cover classification, and crop/plant recognition. This review presents the performance of recent uses in agricultural robots by the implementation of ML and DL algorithms/architectures during the last decade. Performance plots are drawn to study the effectiveness of deep learning over traditional machine learning models for certain agricultural operations. The analysis of prominent studies highlighted that the DL-based models, like RCNN (Region-based Convolutional Neural Network), achieve a higher plant disease/pest detection rate (82.51%) than the well-known ML algorithms, including Multi-Layer Perceptron (64.9%) and K-nearest Neighbour (63.76%). The famous DL architecture named ResNet-18 attained more accurate Area Under the Curve (94.84%), and outperformed ML-based techniques, including Random Forest (RF) (70.16%) and Support Vector Machine (SVM) (60.6%), for crop/weed discrimination. Another DL model called FCN (Fully Convolutional Networks) recorded higher accuracy (83.9%) than SVM (67.6%) and RF (65.6%) algorithms for the classification of agricultural land covers. Finally, some important research gaps from the previous studies and innovative future directions are also noted to help propel automation in agriculture up to the next level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孤独梦安发布了新的文献求助10
1秒前
1秒前
李双艳完成签到 ,获得积分10
1秒前
1秒前
现代的小馒头完成签到,获得积分10
2秒前
晾猫人发布了新的文献求助10
2秒前
晾猫人发布了新的文献求助10
2秒前
晾猫人发布了新的文献求助10
2秒前
3秒前
ln发布了新的文献求助10
3秒前
叶言完成签到,获得积分10
3秒前
愉快山雁发布了新的文献求助10
3秒前
晾猫人发布了新的文献求助10
4秒前
CodeCraft应助小娄娄娄采纳,获得10
4秒前
zhp完成签到 ,获得积分10
4秒前
5秒前
5秒前
和谐如容完成签到,获得积分10
6秒前
6秒前
Hello应助芒果采纳,获得10
6秒前
7秒前
7秒前
8秒前
空格TNT完成签到 ,获得积分10
8秒前
姜积木完成签到 ,获得积分10
9秒前
早上坏完成签到,获得积分10
9秒前
10秒前
爆米花应助zxr采纳,获得10
10秒前
拾寒发布了新的文献求助10
10秒前
小舟潮发布了新的文献求助10
11秒前
11秒前
crazyant发布了新的文献求助10
11秒前
威利大威利完成签到,获得积分20
12秒前
blue完成签到,获得积分10
13秒前
oyxz完成签到,获得积分10
13秒前
13秒前
小小小何完成签到,获得积分10
13秒前
晾猫人完成签到,获得积分10
13秒前
blank发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288