Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments

人工智能 机器学习 卷积神经网络 计算机科学 支持向量机 深度学习 感知器 自动化 随机森林 特征提取 人工神经网络 工程类 机械工程
作者
Muhammad Hammad Saleem,Johan Potgieter,Khalid Mahmood Arif
出处
期刊:Precision Agriculture [Springer Nature]
卷期号:22 (6): 2053-2091 被引量:152
标识
DOI:10.1007/s11119-021-09806-x
摘要

Recently, agriculture has gained much attention regarding automation by artificial intelligence techniques and robotic systems. Particularly, with the advancements in machine learning (ML) concepts, significant improvements have been observed in agricultural tasks. The ability of automatic feature extraction creates an adaptive nature in deep learning (DL), specifically convolutional neural networks to achieve human-level accuracy in various agricultural applications, prominent among which are plant disease detection and classification, weed/crop discrimination, fruit counting, land cover classification, and crop/plant recognition. This review presents the performance of recent uses in agricultural robots by the implementation of ML and DL algorithms/architectures during the last decade. Performance plots are drawn to study the effectiveness of deep learning over traditional machine learning models for certain agricultural operations. The analysis of prominent studies highlighted that the DL-based models, like RCNN (Region-based Convolutional Neural Network), achieve a higher plant disease/pest detection rate (82.51%) than the well-known ML algorithms, including Multi-Layer Perceptron (64.9%) and K-nearest Neighbour (63.76%). The famous DL architecture named ResNet-18 attained more accurate Area Under the Curve (94.84%), and outperformed ML-based techniques, including Random Forest (RF) (70.16%) and Support Vector Machine (SVM) (60.6%), for crop/weed discrimination. Another DL model called FCN (Fully Convolutional Networks) recorded higher accuracy (83.9%) than SVM (67.6%) and RF (65.6%) algorithms for the classification of agricultural land covers. Finally, some important research gaps from the previous studies and innovative future directions are also noted to help propel automation in agriculture up to the next level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
广寒月发布了新的文献求助10
1秒前
淡然水绿发布了新的文献求助10
3秒前
搜集达人应助shiyu采纳,获得10
3秒前
3秒前
在水一方应助辛木采纳,获得10
4秒前
4秒前
优秀傲松完成签到,获得积分10
5秒前
Orange应助孤独晓灵采纳,获得10
5秒前
科研通AI2S应助罗是一采纳,获得10
6秒前
科研通AI2S应助孤独的AD钙采纳,获得10
6秒前
6秒前
好困应助冷静的铅笔采纳,获得20
8秒前
今后应助222采纳,获得10
8秒前
叫兽完成签到,获得积分10
8秒前
林小熊给林小熊的求助进行了留言
9秒前
KONG发布了新的文献求助10
10秒前
NexusExplorer应助ruiruili采纳,获得10
10秒前
清爽代双发布了新的文献求助10
11秒前
jersey完成签到 ,获得积分10
11秒前
充电宝应助米娅采纳,获得20
11秒前
11秒前
11秒前
12秒前
14秒前
汉堡包应助changl2023采纳,获得10
14秒前
14秒前
15秒前
rui完成签到,获得积分10
15秒前
幻月完成签到,获得积分10
16秒前
17秒前
lala发布了新的文献求助10
18秒前
18秒前
汉堡包应助顺心的莫茗采纳,获得10
18秒前
18秒前
19秒前
嘟嘟嘟发布了新的文献求助10
19秒前
19秒前
李健应助hhhhh采纳,获得10
19秒前
小董不懂发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148736
求助须知:如何正确求助?哪些是违规求助? 2799755
关于积分的说明 7836820
捐赠科研通 2457225
什么是DOI,文献DOI怎么找? 1307810
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663