上睑下垂
细胞生物学
成骨细胞
细胞凋亡
生物
细胞分化
半胱氨酸蛋白酶1
基因敲除
程序性细胞死亡
细胞生长
基因
生物化学
体外
作者
Jingliao Zhang,Kuan-hai Wei
标识
DOI:10.1016/j.yexcr.2021.112648
摘要
The acute inflammatory stimulation occurring after a bone fracture regulates the repair and healing of local bone injury; however, under certain conditions, pyroptosis may occur in osteoblasts, which affects osteoblast proliferation and differentiation, thereby affecting the growth, development and morphological changes of bone tissue. The aim of the present study was to examine the effect of the pyroptosis inhibitor necrosulfonamide (NSA) on the proliferation and differentiation of osteoblasts and elucidate the underlying mechanism. The results revealed that NSA reversed the effects of ATP/lipopolysaccharide (LPS) on cell viability and pyroptosis, and on the mRNA and protein expression of pyroptosis-related genes. It also suppressed the secretion of IL-6, TNF-α and IL-1β and reversed the effects of ATP/LPS on the activity of ALP and the mRNA expression of differentiation-related genes in osteoblasts. The fact that overexpression of caspase-1, gasdermin D (GSDMD) and NLRP3 abolished the effects of NSA on the viability and pyroptosis of osteoblasts, as well as the mRNA expression of differentiation-related genes and the activity of ALP in osteoblasts, indicated that NSA promoted the proliferation and differentiation of osteoblasts by inhibiting the NLRP3/caspase-1/GSDMD pyroptosis pathway. The present study provides proof supporting the potential application of NSA for improving the function of osteoblasts in fracture repair and indicates the value of the NLRP3/caspase-1/GSDMD pyroptosis pathway as a pharmaceutical target.
科研通智能强力驱动
Strongly Powered by AbleSci AI