Automation of software test data generation using genetic algorithm and reinforcement learning

计算机科学 自动化 软件 测试管理方法 启发式 遗传算法 过程(计算) 试验数据 数据挖掘 模因算法 机器学习 基于搜索的软件工程 算法 人工智能 软件系统 软件开发 软件开发过程 软件建设 软件工程 工程类 机械工程 操作系统 程序设计语言
作者
Mehdi Esnaashari,Amir Hossein Damia
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:183: 115446-115446 被引量:61
标识
DOI:10.1016/j.eswa.2021.115446
摘要

Software testing is one of the most important methods of analyzing software quality assurance. This process is very time consuming and expensive and accounts for almost 50% of the software production cost. In addition to the cost problem, the nature of the test, which seeks errors in the program, is such that software engineers are not interested in doing the process, so we are looking to use automated methods to reduce the cost and time of the test. In the last decade, various methods have been introduced for the automatic test data generation, the purpose of which is to maximize the detection of errors by generating minimum amount of test data. The main issue in the test data generation process is to determine the input data of the program in such a way that it meets the specified test criterion. In this research, a structural method has been used in order to automate the process of test data generation considering the criterion of covering all finite paths. In structural methods, the problem is converted into a search problem and meta-heuristic algorithms are used to solve it. The proposed method in this paper is a memetic algorithm in which reinforcement learning is used as a local search method within a genetic algorithm. Experimental results have shown that this method is faster for test data generation than many existing evolutionary or meta-heuristic algorithms and can provide better coverage with fewer evaluations. Compared algorithms include: conventional genetic algorithm, a variety of improvements to the genetic algorithm, random search, particle swarm optimization, bees algorithm, ant colony optimization, simulated annealing, hill climbing, and tabu search.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
谢耳朵讲中文完成签到,获得积分10
2秒前
2秒前
花花发布了新的文献求助10
2秒前
恬227发布了新的文献求助10
3秒前
NexusExplorer应助BBBBonnie采纳,获得10
3秒前
4秒前
烟花应助1111采纳,获得10
4秒前
panjunlu发布了新的文献求助10
4秒前
4秒前
丘比特应助长岛的雪采纳,获得10
4秒前
binbin完成签到,获得积分10
5秒前
5秒前
5秒前
内向的火车完成签到 ,获得积分10
5秒前
1111完成签到,获得积分10
7秒前
ll发布了新的文献求助10
8秒前
丰富宝马发布了新的文献求助10
8秒前
lijiayu完成签到,获得积分10
8秒前
婷玉完成签到,获得积分10
8秒前
情怀应助曹志毅采纳,获得10
9秒前
迷人问兰发布了新的文献求助200
9秒前
1111发布了新的文献求助10
10秒前
所所应助zip采纳,获得10
10秒前
10秒前
恬227完成签到,获得积分10
11秒前
汽水完成签到,获得积分10
11秒前
Hello应助花花采纳,获得10
12秒前
13秒前
苏打完成签到,获得积分10
13秒前
14秒前
甜言蜜语完成签到,获得积分10
14秒前
华仔应助菠萝派采纳,获得10
14秒前
孙雪松完成签到 ,获得积分10
15秒前
醒醒完成签到,获得积分10
15秒前
Yoyo完成签到 ,获得积分10
16秒前
16秒前
16秒前
ll完成签到,获得积分20
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154