Automation of software test data generation using genetic algorithm and reinforcement learning

计算机科学 自动化 软件 测试管理方法 启发式 遗传算法 过程(计算) 试验数据 数据挖掘 模因算法 机器学习 基于搜索的软件工程 算法 人工智能 软件系统 软件开发 软件开发过程 软件建设 软件工程 机械工程 工程类 程序设计语言 操作系统
作者
Mehdi Esnaashari,Amir Hossein Damia
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:183: 115446-115446 被引量:61
标识
DOI:10.1016/j.eswa.2021.115446
摘要

Software testing is one of the most important methods of analyzing software quality assurance. This process is very time consuming and expensive and accounts for almost 50% of the software production cost. In addition to the cost problem, the nature of the test, which seeks errors in the program, is such that software engineers are not interested in doing the process, so we are looking to use automated methods to reduce the cost and time of the test. In the last decade, various methods have been introduced for the automatic test data generation, the purpose of which is to maximize the detection of errors by generating minimum amount of test data. The main issue in the test data generation process is to determine the input data of the program in such a way that it meets the specified test criterion. In this research, a structural method has been used in order to automate the process of test data generation considering the criterion of covering all finite paths. In structural methods, the problem is converted into a search problem and meta-heuristic algorithms are used to solve it. The proposed method in this paper is a memetic algorithm in which reinforcement learning is used as a local search method within a genetic algorithm. Experimental results have shown that this method is faster for test data generation than many existing evolutionary or meta-heuristic algorithms and can provide better coverage with fewer evaluations. Compared algorithms include: conventional genetic algorithm, a variety of improvements to the genetic algorithm, random search, particle swarm optimization, bees algorithm, ant colony optimization, simulated annealing, hill climbing, and tabu search.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晓静完成签到 ,获得积分10
1秒前
rmbsLHC发布了新的文献求助30
1秒前
拼搏的白玉完成签到,获得积分10
1秒前
我爱上班完成签到,获得积分10
2秒前
绿色催化发布了新的文献求助10
2秒前
小羊完成签到,获得积分10
2秒前
2秒前
2秒前
百里三问完成签到,获得积分10
2秒前
小蘑菇应助章文荣采纳,获得10
3秒前
wucl1990发布了新的文献求助10
3秒前
小不58完成签到,获得积分10
3秒前
无花果应助叶颤采纳,获得10
3秒前
3秒前
demia完成签到,获得积分10
3秒前
Sumengyan发布了新的文献求助10
3秒前
Owen应助谨慎的凝丝采纳,获得20
4秒前
qianqiu完成签到 ,获得积分10
4秒前
4秒前
abc97发布了新的文献求助30
5秒前
无心的小甜瓜完成签到 ,获得积分10
5秒前
我爱上班发布了新的文献求助30
5秒前
5秒前
酷波er应助英俊的小恐龙采纳,获得10
6秒前
yy发布了新的文献求助10
6秒前
俭朴幼荷应助suhanxing采纳,获得10
6秒前
6秒前
锅里有虾完成签到,获得积分10
7秒前
憨憨发布了新的文献求助10
7秒前
平淡尔琴完成签到,获得积分10
9秒前
9秒前
正反馈发布了新的文献求助10
10秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
Owen应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
11秒前
朱朱珠珠应助科研通管家采纳,获得10
11秒前
rmbsLHC完成签到,获得积分10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582755
求助须知:如何正确求助?哪些是违规求助? 4666874
关于积分的说明 14764127
捐赠科研通 4608899
什么是DOI,文献DOI怎么找? 2528885
邀请新用户注册赠送积分活动 1498196
关于科研通互助平台的介绍 1466887