Automation of software test data generation using genetic algorithm and reinforcement learning

计算机科学 自动化 软件 测试管理方法 启发式 遗传算法 过程(计算) 试验数据 数据挖掘 模因算法 机器学习 基于搜索的软件工程 算法 人工智能 软件系统 软件开发 软件开发过程 软件建设 软件工程 机械工程 工程类 程序设计语言 操作系统
作者
Mehdi Esnaashari,Amir Hossein Damia
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:183: 115446-115446 被引量:61
标识
DOI:10.1016/j.eswa.2021.115446
摘要

Software testing is one of the most important methods of analyzing software quality assurance. This process is very time consuming and expensive and accounts for almost 50% of the software production cost. In addition to the cost problem, the nature of the test, which seeks errors in the program, is such that software engineers are not interested in doing the process, so we are looking to use automated methods to reduce the cost and time of the test. In the last decade, various methods have been introduced for the automatic test data generation, the purpose of which is to maximize the detection of errors by generating minimum amount of test data. The main issue in the test data generation process is to determine the input data of the program in such a way that it meets the specified test criterion. In this research, a structural method has been used in order to automate the process of test data generation considering the criterion of covering all finite paths. In structural methods, the problem is converted into a search problem and meta-heuristic algorithms are used to solve it. The proposed method in this paper is a memetic algorithm in which reinforcement learning is used as a local search method within a genetic algorithm. Experimental results have shown that this method is faster for test data generation than many existing evolutionary or meta-heuristic algorithms and can provide better coverage with fewer evaluations. Compared algorithms include: conventional genetic algorithm, a variety of improvements to the genetic algorithm, random search, particle swarm optimization, bees algorithm, ant colony optimization, simulated annealing, hill climbing, and tabu search.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
加壹完成签到 ,获得积分10
刚刚
1秒前
2秒前
trayheep发布了新的文献求助10
3秒前
汤远山发布了新的文献求助10
4秒前
Rando发布了新的文献求助10
4秒前
zz发布了新的文献求助10
4秒前
打打应助虚幻馒头采纳,获得10
4秒前
风笑完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
浮游应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
asdfzxcv应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
kang完成签到,获得积分10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得30
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得20
6秒前
研友_VZG7GZ应助酥山采纳,获得10
7秒前
xinxinxin91完成签到,获得积分10
8秒前
山水之乐发布了新的文献求助10
9秒前
段文天发布了新的文献求助10
9秒前
江睿曦完成签到,获得积分10
9秒前
xs完成签到,获得积分10
10秒前
11秒前
xiaopu完成签到,获得积分10
12秒前
江睿曦发布了新的文献求助10
12秒前
trayheep完成签到,获得积分10
12秒前
科研通AI6应助马可波航采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655717
求助须知:如何正确求助?哪些是违规求助? 4800177
关于积分的说明 15073698
捐赠科研通 4814168
什么是DOI,文献DOI怎么找? 2575555
邀请新用户注册赠送积分活动 1530927
关于科研通互助平台的介绍 1489596