How to Secure Distributed Filters Under Sensor Attacks

可观测性 有界函数 滤波器(信号处理) 控制理论(社会学) 计算机科学 上下界 不变(物理) 探测器 无线传感器网络 噪音(视频) 国家(计算机科学) 算法 数学 人工智能 应用数学 电信 数学分析 计算机网络 图像(数学) 控制(管理) 数学物理 计算机视觉
作者
Xingkang He,Xiaoqiang Ren,Henrik Sandberg,Karl Henrik Johansson
出处
期刊:IEEE Transactions on Automatic Control [Institute of Electrical and Electronics Engineers]
卷期号:67 (6): 2843-2856 被引量:39
标识
DOI:10.1109/tac.2021.3092603
摘要

In this article, we study how to secure distributed filters for linear time-invariant systems with bounded noise under false-data injection attacks. A malicious attacker is able to arbitrarily manipulate the observations for a time-varying and unknown subset of the sensors. We first propose a recursive distributed filter consisting of two steps at each update. The first step employs a saturation-like scheme, which gives a small gain if the innovation is large corresponding to a potential attack. The second step is a consensus operation of state estimates among neighboring sensors. We prove the estimation error is upper bounded if the filter parameters satisfy a condition. We further analyze the feasibility of the condition and connect it to sparse observability in the centralized case. When the attacked sensor set is known to be time-invariant, the secured filter is modified by adding an online local attack detector. The detector is able to identify the attacked sensors whose observation innovations are larger than the detection thresholds. Also, with more attacked sensors being detected, the thresholds will adaptively adjust to reduce the space of the stealthy attack signals. The resilience of the secured filter with detection is verified by an explicit relationship between the upper bound of the estimation error and the number of detected attacked sensors. Moreover, for the noise-free case, we prove that the state estimate of each sensor asymptotically converges to the system state under certain conditions. Numerical simulations are provided to illustrate the developed results.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
rui应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
糟糕的颜完成签到 ,获得积分10
5秒前
wayne完成签到 ,获得积分10
10秒前
SciGPT应助程昱采纳,获得10
12秒前
15秒前
善学以致用应助cc采纳,获得10
18秒前
三方完成签到,获得积分10
19秒前
20秒前
李多意完成签到,获得积分10
20秒前
20秒前
huahua完成签到 ,获得积分10
22秒前
22秒前
Jasmineyfz完成签到 ,获得积分10
23秒前
求知小生完成签到 ,获得积分10
25秒前
程昱发布了新的文献求助10
26秒前
2022H发布了新的文献求助10
26秒前
29秒前
年轻真好啊完成签到,获得积分10
32秒前
cc发布了新的文献求助10
32秒前
从从余余完成签到 ,获得积分10
34秒前
科目三应助猪头采纳,获得10
38秒前
kaier完成签到 ,获得积分10
38秒前
LeeHx完成签到 ,获得积分10
39秒前
李子园完成签到 ,获得积分10
41秒前
AAAA发布了新的文献求助10
41秒前
麻瓜不是瓜完成签到 ,获得积分10
42秒前
44秒前
Ps发布了新的文献求助10
46秒前
风凌完成签到 ,获得积分10
46秒前
tianfu1899发布了新的文献求助10
48秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852066
求助须知:如何正确求助?哪些是违规求助? 6275741
关于积分的说明 15627645
捐赠科研通 4967992
什么是DOI,文献DOI怎么找? 2678855
邀请新用户注册赠送积分活动 1623112
关于科研通互助平台的介绍 1579503