How to Secure Distributed Filters Under Sensor Attacks

可观测性 有界函数 滤波器(信号处理) 控制理论(社会学) 计算机科学 上下界 不变(物理) 探测器 无线传感器网络 噪音(视频) 国家(计算机科学) 算法 数学 人工智能 应用数学 电信 数学物理 计算机视觉 计算机网络 图像(数学) 数学分析 控制(管理)
作者
Xingkang He,Xiaoqiang Ren,Henrik Sandberg,Karl Henrik Johansson
出处
期刊:IEEE Transactions on Automatic Control [Institute of Electrical and Electronics Engineers]
卷期号:67 (6): 2843-2856 被引量:39
标识
DOI:10.1109/tac.2021.3092603
摘要

In this article, we study how to secure distributed filters for linear time-invariant systems with bounded noise under false-data injection attacks. A malicious attacker is able to arbitrarily manipulate the observations for a time-varying and unknown subset of the sensors. We first propose a recursive distributed filter consisting of two steps at each update. The first step employs a saturation-like scheme, which gives a small gain if the innovation is large corresponding to a potential attack. The second step is a consensus operation of state estimates among neighboring sensors. We prove the estimation error is upper bounded if the filter parameters satisfy a condition. We further analyze the feasibility of the condition and connect it to sparse observability in the centralized case. When the attacked sensor set is known to be time-invariant, the secured filter is modified by adding an online local attack detector. The detector is able to identify the attacked sensors whose observation innovations are larger than the detection thresholds. Also, with more attacked sensors being detected, the thresholds will adaptively adjust to reduce the space of the stealthy attack signals. The resilience of the secured filter with detection is verified by an explicit relationship between the upper bound of the estimation error and the number of detected attacked sensors. Moreover, for the noise-free case, we prove that the state estimate of each sensor asymptotically converges to the system state under certain conditions. Numerical simulations are provided to illustrate the developed results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啦啦啦啦完成签到 ,获得积分10
3秒前
JJJ完成签到,获得积分10
5秒前
丫丫发布了新的文献求助10
6秒前
hakunamatata完成签到 ,获得积分10
6秒前
Lucas应助握月担风采纳,获得10
7秒前
ANESTHESIA_XY完成签到 ,获得积分10
8秒前
8秒前
艾妮妮完成签到,获得积分10
9秒前
古藤完成签到 ,获得积分10
10秒前
xxr完成签到,获得积分20
11秒前
蓉儿完成签到,获得积分10
13秒前
炙热成危发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
猪猪hero应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
猪猪hero应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得20
18秒前
猪猪hero应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
18秒前
iNk应助科研通管家采纳,获得20
18秒前
Hello应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
猪猪hero应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
19秒前
暖冬22发布了新的文献求助10
20秒前
20秒前
khh完成签到 ,获得积分10
20秒前
20秒前
20秒前
20秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Injection and Compression Molding Fundamentals 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421740
求助须知:如何正确求助?哪些是违规求助? 3022352
关于积分的说明 8900384
捐赠科研通 2709598
什么是DOI,文献DOI怎么找? 1485995
科研通“疑难数据库(出版商)”最低求助积分说明 686938
邀请新用户注册赠送积分活动 682069