石墨烯
阳极
氧化物
材料科学
化学工程
电化学
钠
纳米颗粒
无机化学
纳米技术
化学
电极
冶金
工程类
物理化学
作者
Qirui Hou,Yue Zhou,Li Zhu,Licui Zhang,Yongqiang Li,Ping Wu,Xiaoshu Zhu,Shaohua Wei,Yiming Zhou
标识
DOI:10.1016/j.jtice.2021.04.068
摘要
Due to nature abundant and low-cost of sodium reserves with broad distribution in the earth's crust, sodium-ion batteries (SIBs) have attracted widespread attention for their great potential application in low-speed electric vehicles and large-scale energy storage system. However, their practical application is still hampered by the lack of decent anode materials. In this work, we develop an effective strategy to fabricate a nanohybrid of Sn4P3 and graphene oxide and demonstrate its outstanding sodium-storage behavior as an anode material for SIBs. By directly grinding tin(IV) chloride pentahydrate, sodium hydroxide, graphene oxide (GO) and surfactant PEG-200 at ambient temperature, an effective solid state reaction occurred to give rise to a precursor (named as SnO2/GO-PEG200), i.e. a nanocomposite of SnO2 encapsulated within GO matrix. After subsequent phosphorization at 280 °C using sodium hypophosphite monohydrate as phosphorous source, a nanohybrid of Sn4P3 and graphene oxide (designated as Sn4P3/GO-PEG200) was acquired. The coexistence of Sn4P3 nanoparticles and GO nanosheets endows the nanohybrid with improved electronic conductivity, highly structural integrity and superior electrochemical performance. When employed as anode material for SIBs, the nanohybrid anode demonstrates a good cycling stability (419 mA h g−1 after 100 cycles at 0.1 A g−1), with a remarkable rate capabilities (325 mA h g−1 at a current density of 1 A g−1 and 187 mA h g−1 at a current density of 5 A g−1, respectively).
科研通智能强力驱动
Strongly Powered by AbleSci AI